首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   17篇
  国内免费   1篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   3篇
  2015年   4篇
  2014年   7篇
  2013年   1篇
  2012年   4篇
  2011年   11篇
  2010年   2篇
  2009年   7篇
  2008年   5篇
  2007年   5篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  2000年   6篇
  1999年   5篇
  1998年   3篇
  1996年   2篇
  1995年   2篇
  1993年   3篇
  1992年   7篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1982年   2篇
  1979年   3篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   5篇
  1971年   3篇
  1970年   2篇
  1969年   2篇
  1966年   1篇
  1964年   1篇
  1959年   1篇
排序方式: 共有150条查询结果,搜索用时 46 毫秒
121.
122.
The F-spondin genes are a family of extracellular matrix molecules united by two conserved domains, FS1 and FS2, at the amino terminus plus a variable number of thrombospondin repeats at the carboxy terminus. Currently, characterized members include a single gene in Drosophila and multiple genes in vertebrates. The vertebrate genes are expressed in the midline of the developing embryo, primarily in the floor plate of the neural tube. To investigate the evolution of chordate F-spondin genes, I have used the basal position in chordate phylogeny of the acraniate amphioxus. A single F-spondin-related gene, named AmphiF-spondin, was isolated from amphioxus. Based on molecular phylogenetics, AmphiF-spondin is closely related to a particular subgroup of vertebrate F-spondin genes that encode six thrombospondin repeats. However, unlike these genes, expression of AmphiF-spondin is not confined to the midline but is found through most of the central nervous system. Additionally, AmphiF-spondin has lost three thrombospondin repeats and gained two fibronectin type III repeats, one of which has strong identity to a fibronectin type III repeat from Deleted in Colorectal Cancer (DCC). Taken together, these results suggest a complex evolutionary history for chordate F-spondin genes that includes (1) domain loss, (2) domain gain by tandem duplication and divergence of existing domains, and (3) gain of heterologous domains by exon shuffling.   相似文献   
123.
124.
125.
126.

Background

Visceral leishmaniasis in Brazil is caused by the protozoan Leishmania (Leishmania) chagasi and it is transmitted by sandfly of the genus Lutzomyia. Dogs are an important domestic reservoir, and control of the transmission of visceral leishmaniasis (VL) to humans includes the elimination of infected dogs. However, though dogs are considered to be an important element in the transmission cycle of Leishmania, the identification of infected dogs representing an immediate risk for transmission has not been properly evaluated. Since it is not possible to treat infected dogs, they are sacrificed when a diagnosis of VL is established, a measure that is difficult to accomplish in highly endemic areas. In such areas, parameters that allow for easy identification of reservoirs that represents an immediate risk for transmission is of great importance for the control of VL transmission. In this study we aimed to identify clinical parameters, reinforced by pathological parameters that characterize dogs with potential to transmit the parasite to the vector.

Results

The major clinical manifestations of visceral leishmaniasis in dogs from an endemic area were onicogriphosis, skin lesions, conjunctivitis, lymphadenopathy, and weight loss. The transmission potential of these dogs was assessed by xenodiagnosis using Lutzomyia longipalpis. Six of nine symptomatic dogs were infective to Lutzomyia longipalpis while none of the five asymptomatic dogs were infective to the sandfly. Leishmania amastigotes were present in the skin of all clinically symptomatic dogs, but absent in asymptomatic dogs. Higher parasite loads were observed in the ear and ungueal region, and lower in abdomen. The inflammatory infiltrate was more intense in the ears and ungueal regions of both symptomatic and asymptomatic dogs. In clinically affected dogs in which few or none Leishmania amastigotes were observed, the inflammatory infiltrate was constituted mainly of lymphocytes and macrophages. When many parasites were present, the infiltrate was also comprised of lymphocytes and macrophages, as well as a larger quantity of polymorphonuclear neutrophils (PMNs).

Conclusion

Dogs that represent an immediate risk for transmission of Leishmania in endemic areas present clinical manifestations that include onicogriphosis, skin lesions, conjunctivitis, lymphadenopathy, and weight loss. Lymphadenopathy in particular was a positive clinical hallmark since it was closely related to the positive xenodiagnosis.
  相似文献   
127.
Although Ascaris sperm motility closely resembles that seen in many other types of crawling cells, the lamellipodial dynamics that drive movement result from modulation of a cytoskeleton based on the major sperm protein (MSP) rather than actin. The dynamics of the Ascaris sperm cytoskeleton can be studied in a cell-free in vitro system based on the movement of plasma membrane vesicles by fibers constructed from bundles of MSP filaments. In addition to ATP, MSP, and a plasma membrane protein, reconstitution of MSP motility in this cell-free extract requires cytosolic proteins that orchestrate the site-specific assembly and bundling of MSP filaments that generates locomotion. Here, we identify a fraction of cytosol that is comprised of a small number of proteins but contains all of the soluble components required to assemble fibers. We have purified two of these proteins, designated MSP fiber proteins (MFPs) 1 and 2 and demonstrated by immunolabeling that both are located in the MSP cytoskeleton in cells and in fibers. These proteins had reciprocal effects on fiber assembly in vitro: MFP1 decreased the rate of fiber growth, whereas MFP2 increased the growth rate.  相似文献   
128.
CD98, an early marker of T-cell activation, is an important regulator of integrin-mediated adhesion events. Previous studies suggest that CD98 is coupled to both cellular activation and transformation and is involved in the pathogenesis of viral infection, inflammatory disease, and cancer. Understanding of the molecular mechanisms underlying CD98 activity may have far-reaching practical applications in the development of novel therapeutic strategies in these disease states. Using small cell lung cancer cell lines, which are nonadherent, nonpolarized, and highly express CD98, we show that, in vitro, under physiological conditions, CD98 is constitutively associated with beta1 integrins regardless of activation status. Cross-linking CD98 with the monoclonal antibody 4F2 stimulated phosphatidylinositol (PI) 3-kinase, PI(3,4,5)P(3), and protein kinase B in the absence of integrin ligation or extracellular matrix engagement. Furthermore, cross-linking CD98 promoted anchorage-independent growth. Using fibroblasts derived from beta1 integrin null stem cells (GD25), wild-type GD25beta1, or GD25 cells expressing a mutation preventing beta1 integrin-dependent FAK phosphorylation, we demonstrate that a functional beta1 integrin is required for CD98 signaling. We propose that by cross-linking CD98, it acts as a "molecular facilitator" in the plasma membrane, clustering beta1 integrins to form high-density complexes. This results in integrin activation, integrin-like signaling, and anchorage-independent growth. Activation of PI 3-kinase may, in part, explain cellular transformation seen on overexpressing CD98. These results may provide a paradigm for events involved in such diverse processes as inflammation and viral-induced cell fusion.  相似文献   
129.
Previous work has shown that the presence of kaempferol triglucoside (K9) in soybean ( Glycine max L. Merr.) leaves is associated with reduced numbers of stomata, especially on the upper surface. In the present test, shade was imposed on soybean plants as a means of altering the level of K9, and thus testing the relationship between quantities of K9 and stomatal density. Five lines of soybean that differ in their complement of flavonol glycosides were grown in the field unshaded and also with a 64 and 80% reduction in daylight intensity. Samples of the second, sixth and tenth trifoliate leaves were taken at 34, 53 and 77 days after planting. Shade reduced the quantities of flavonoids on a per leaf and a per unit area basis. Shade had no effect on stomatal density in lines containing K9, but reduced stomatal density in lines lacking K9. We envisage two opposing effects of shade on stomatal density: a direct effect in which shade reduces numbers, and an indirect effect in which a decrease in K9 content allows an increase in stomatal density. The net effect of shade on lines containing K9 appears to be the maintenance of a constant stomatal density. The quantity of K9 was highly correlated with stomatal density within all treatment combinations, and with all treatments combined.  相似文献   
130.
Oestradiol can stimulate osteoblast activity. Osteoblast function is thought to be regulated by nitric oxide (NO). We hypothesised that the effect of 17beta-oestradiol (17beta-E(2)) on osteoblast activity is mediated by NO. This hypothesis was tested using osteoblasts isolated from human trabecular bone, calvariae of rats, endothelial NO synthase (eNOS) gene-deficient mice, and their wild-type counterparts. Our results show that 17beta-E(2) dose-dependently stimulated proliferation and differentiation of primary human, rat and wild-typeosteoblasts. The presence of N(G)-monomethyl-l-arginine (10(-3) M), an inhibitor of NOS activity, blocked the 17beta-E(2)-(10(-7) M)-induced increases in thymidine incorporation (P < 0.01), alkaline phosphatase activity (P < 0.01) and bone nodule formation (P < 0.01) of wild-type, human and rat osteoblasts, respectively. Moreover, 17beta-E(2) did not induce a response in eNOS gene-deficient osteoblasts. 17beta-E(2) also increased total eNOS enzyme expression in rat osteoblasts. These findings indicate 17beta-E(2) modulates osteoblast function by NO-dependent mechanisms mediated via the eNOS isoform.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号