首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   581篇
  免费   60篇
  国内免费   3篇
  644篇
  2022年   3篇
  2021年   11篇
  2020年   10篇
  2019年   8篇
  2018年   10篇
  2017年   14篇
  2016年   7篇
  2015年   26篇
  2014年   25篇
  2013年   32篇
  2012年   32篇
  2011年   38篇
  2010年   20篇
  2009年   14篇
  2008年   30篇
  2007年   23篇
  2006年   26篇
  2005年   27篇
  2004年   18篇
  2003年   15篇
  2002年   20篇
  2001年   12篇
  2000年   20篇
  1999年   12篇
  1998年   17篇
  1997年   7篇
  1996年   8篇
  1995年   4篇
  1994年   8篇
  1993年   3篇
  1992年   6篇
  1991年   12篇
  1990年   11篇
  1989年   15篇
  1988年   5篇
  1987年   5篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1981年   3篇
  1980年   5篇
  1979年   7篇
  1977年   3篇
  1976年   6篇
  1972年   9篇
  1970年   5篇
  1969年   4篇
  1967年   3篇
  1962年   3篇
  1950年   2篇
排序方式: 共有644条查询结果,搜索用时 0 毫秒
31.

Background  

An increasing number of bioinformatics methods are considering the phylogenetic relationships between biological sequences. Implementing new methodologies using the maximum likelihood phylogenetic framework can be a time consuming task.  相似文献   
32.
Glia in the central nervous system (CNS) express diverse inward rectifying potassium channels (Kir). The major function of Kir is in establishing the high potassium (K+) selectivity of the glial cell membrane and strongly negative resting membrane potential (RMP), which are characteristic physiological properties of glia. The classical property of Kir is that K+ flows inwards when the RMP is negative to the equilibrium potential for K+ (E(K)), but at more positive potentials outward currents are inhibited. This provides the driving force for glial uptake of K+ released during neuronal activity, by the processes of "K+ spatial buffering" and "K+ siphoning", considered a key function of astrocytes, the main glial cell type in the CNS. Glia express multiple Kir channel subtypes, which are likely to have distinct functional roles related to their differences in conductance, and sensitivity to intracellular and extracellular factors, including pH, ATP, G-proteins, neurotransmitters and hormones. A feature of CNS glia is their specific expression of the Kir4.1 subtype, which is a major K+ conductance in glial cell membranes and has a key role in setting the glial RMP. It is proposed that Kir4.1 have a primary function in K+ regulation, both as homomeric channels and as heteromeric channels by co-assembly with Kir5.1 and probably Kir2.0 subtypes. Significantly, Kir4.1 are also expressed by oligodendrocytes, the myelin-forming cells of the CNS, and the genetic ablation of Kir4.1 results in severe hypomyelination. Hence, Kir, and in particular Kir4.1, are key regulators of glial functions, which in turn determine neuronal excitability and axonal conduction.  相似文献   
33.

Background

Influenza pandemic remains a serious threat to human health. Viruses of avian origin, H5N1, H7N7 and H9N2, have repeatedly crossed the species barrier to infect humans. Recently, a novel strain originated from swine has evolved to a pandemic. This study aims at improving our understanding on the pathogenic mechanism of influenza viruses, in particular the role of non-structural (NS1) protein in inducing pro-inflammatory and apoptotic responses.

Methods

Human lung epithelial cells (NCI-H292) was used as an in-vitro model to study cytokine/chemokine production and apoptosis induced by transfection of NS1 mRNA encoded by seven infleunza subtypes (seasonal and pandemic H1, H2, H3, H5, H7, and H9), respectively.

Results

The results showed that CXCL-10/IP10 was most prominently induced (> 1000 folds) and IL-6 was slightly induced (< 10 folds) by all subtypes. A subtype-dependent pattern was observed for CCL-2/MCP-1, CCL3/MIP-1α, CCL-5/RANTES and CXCL-9/MIG; where induction by H5N1 was much higher than all other subtypes examined. All subtypes induced a similar temporal profile of apoptosis following transfection. The level of apoptosis induced by H5N1 was remarkably higher than all others. The cytokine/chemokine and apoptosis inducing ability of the 2009 pandemic H1N1 was similar to previous seasonal strains.

Conclusions

In conclusion, the NS1 protein encoded by H5N1 carries a remarkably different property as compared to other avian and human subtypes, and is one of the keys to its high pathogenicity. NCI-H292 cells system proves to be a good in-vitro model to delineate the property of NS1 proteins.
  相似文献   
34.
Evidence suggests that the plasma membrane Ca2+-ATPase (PMCA), which is critical for maintaining a low intracellular Ca2+ concentration ([Ca2+]i), utilizes glycolytically derived ATP in pancreatic ductal adenocarcinoma (PDAC) and that inhibition of glycolysis in PDAC cell lines results in ATP depletion, PMCA inhibition, and an irreversible [Ca2+]i overload. We explored whether this is a specific weakness of highly glycolytic PDAC by shifting PDAC cell (MIA PaCa-2 and PANC-1) metabolism from a highly glycolytic phenotype toward mitochondrial metabolism and assessing the effects of mitochondrial versus glycolytic inhibitors on ATP depletion, PMCA inhibition, and [Ca2+]i overload. The highly glycolytic phenotype of these cells was first reversed by depriving MIA PaCa-2 and PANC-1 cells of glucose and supplementing with α-ketoisocaproate or galactose. These culture conditions resulted in a significant decrease in both glycolytic flux and proliferation rate, and conferred resistance to ATP depletion by glycolytic inhibition while sensitizing cells to mitochondrial inhibition. Moreover, in direct contrast to cells exhibiting a high glycolytic rate, glycolytic inhibition had no effect on PMCA activity and resting [Ca2+]i in α-ketoisocaproate- and galactose-cultured cells, suggesting that the glycolytic dependence of the PMCA is a specific vulnerability of PDAC cells exhibiting the Warburg phenotype.  相似文献   
35.

Background  

Immune response pathways have been relatively well-conserved across animal species, with similar systems in both mammals and invertebrates. Interestingly, honey bees have substantially reduced numbers of genes associated with immune function compared with solitary insect species. However, social species such as honey bees provide an excellent environment for pathogen or parasite transmission with controlled environmental conditions in the hive, high population densities, and frequent interactions. This suggests that honey bees may have developed complementary mechanisms, such as behavioral modifications, to deal with disease.  相似文献   
36.
The Origin of the Oxidative Burst in Plants   总被引:18,自引:0,他引:18  
A large number of publications recently have drawn strong analogies between the production of active oxygen species in plant cells and the “oxidative burst” of the phagocyte, even to the point of constructing elaborate models involving receptor mediated G-protein activation of a plasmalemma NADPH oxidase in plant cells. However there are potentially other active oxygen species generating systems at the plant cell surface. The present work examines these alternatives with particular emphasis on the rapid production of active oxygen species, in common with a number of other systems, by suspension-cultured cells of French bean on exposure to an elicitor preparation from the fungal pathogen Colletotrichum lindemuthianum. The cells show a rapid increase in oxygen uptake which is followed shortly afterwards by the appearance of a burst of these active oxygen species, as measured by a luminescence assay, which is probably all accounted for by hydrogen peroxide. An essential factor in this production of H2O2 appears to be a transient alkalinization of the apoplast where the pH rises to 7.0-7.2. Dissipation of this pH change with a number of treatments, including ionophores and strong buffers, substantially inhibits the oxidative burst. Little evidence was found for enhanced activation of a membrane-bound NADPH oxidase. However the production of H2O2 under alkaline conditions can be modelled in vitro with a number of peroxidases, one of which, an Mr 46,000 wall-bound cationic peroxidase, is able to sustain H2O2 production at neutral pH unlike the other peroxidases which only show low levels of this reaction under such conditions and have pH optima at values greater than 8.0. On the basis of such comparative pH profiles between the cells and the purified peroxidase and further inhibition studies a direct production of H2O2 from the wall peroxidase in French bean cells is proposed. These experiments may mimic some of the responses to plant pathogens, particularly the hypersensitive response, which is an important feature of resistance. A cell wall peroxidase-origin for the oxidative burst is clearly different from a model consisting of receptor activation of a plasmaiemma-localised NADPH oxidase generating superoxide. An alternative simple and rapid mechanism thus exists for the generation of H2O2 which does not require such multiple proteinaceous components.  相似文献   
37.
38.
We carried out an ecosystem service (ES) assessment at Soto de Pajares, a 400 ha active gravel quarry site located close to protected areas in the southeast of the Community of Madrid, Spain. The currently approved restoration plan is for quarry‐made excavations to be restored back to agricultural land. However, the site has been identified as being important for nature, so different restoration strategies should be considered. To better understand how these compare in terms of ES provision, which had not previously been done at mineral extraction sites in Spain, we used an established toolkit: the Toolkit for Ecosystem Service Site‐based Assessments (TESSA). We compared the agriculture‐focused restoration plan and two nature‐focused alternative scenarios, one without public access (conservation scenario) and the other with public access (compromise scenario). Monetary estimations of the value of agricultural production, climate change mitigation, and recreation were calculated in three scenarios. Results indicated that the compromise scenario provided the greatest annual value (€91,409), mainly due to its potential visitors, surpassing both agricultural (€68,504) and conservation (€48,556) scenarios. Considering the higher costs associated with restoring sites to agricultural production, nature conservation may be an attractive option for extraction companies. The use of TESSA at this site has provided valuable information to quarry managers to help guide their decision‐making.  相似文献   
39.
Pollen beetles (Meligethes aeneus) and cabbage seed weevils (Ceutorhynchus assimilis) are major pests of oilseed rape (Brassica napus) throughout Europe. In field cage experiments in both winter and spring rape, honey bees (Apis mellifera) effectively transported the entomopathogenic fungus Metarhizium anisopliae to the flowers, causing infection and mortality of both adult and larval pollen beetles, as well as of adult seed weevils. External conidiation was observed on many of the dead pest insects. Although some external conidiation also occurred on dead honey bees, reduction in honey bee colony size during the experiments appeared unrelated to the fungus. The potential of this technique for integration into pest management strategies for the crop, particularly in association with a trap crop, is discussed.  相似文献   
40.
Abstract

Opportunistic sightings and strandings of Caperea marginata (n=196) from the vicinity of Australia and New Zealand (1884 to early 2007) were used to relate geographic and temporal patterns to oceanographic and broad-scale climatic variability. Records were not uniformly distributed along the coast and more (69%) were from Australia than New Zealand. Seven coastal whale ‘hotspots’ were identified which accounted for 61% of records with locality data. Half of the hotspot records were from southeast (37) and northwest (20) Tasmania—others each had 9–15 events. Upwelling and/or high zooplankton abundance has been documented near all whale hotspots. Records of C. marginata occurred in all months, with 75% in spring and summer. Inter-annual variability showed broad agreement between increased whale records (usually in spring/summer) and strongly positive ‘Niño 3.4’ during 1980–1995 but not thereafter. Coastal upwelling and productivity increase during climatic phenomena such as El Niño and are likely to be quickly beneficial to plankton-feeding whales such as C. marginata.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号