首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   9篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   3篇
  2015年   4篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   6篇
  2003年   2篇
  2002年   5篇
  2001年   1篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   3篇
  1990年   1篇
  1987年   1篇
  1983年   2篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1971年   1篇
  1969年   1篇
  1881年   2篇
  1880年   1篇
  1879年   1篇
排序方式: 共有80条查询结果,搜索用时 62 毫秒
51.
52.
A DNA-binding protein, VsENBP1, previously isolated from Vicia sativa was shown to bind in a sequence-specific manner to the early nodulin ENOD12 gene promoter from Pisum sativum. Here, the functional importance of the VsENBP1 binding sites on the PsENOD12B promoter has been studied in vivo. A promoter-gusA fusion in which a mutation was introduced at the putative target sequence, AATAA, was inactive in nodules of transgenic Vicia hirsuta roots. Gel retardation assays showed that VsENBP1 does not bind to the mutated promoter segment, suggesting that VsENBP1 activates the PsENOD12B expression in nodules through its interaction with its target sequence. In the presence of the 35S enhancer, an ENOD12 promoter-GUS construct gave expression in root vascular tissue in addition to the root nodules. Overexpression of Vsenbp1 in transgenic V. hirsuta roots reduced the leaky expression in root vascular tissue in contrast to nodules in which a small increase in GUS expression was observed. The results indicate that VsENBP1 acts as a repressor of ENOD12 expression in root tissue.  相似文献   
53.
54.
The aim of this study was to elucidate the evolution of enzyme secretome of early lineage fungi to contribute to resolving the basal part of Fungal Kingdom and pave the way for industrial evaluation of their unique enzymes. By combining results of advanced sequence analysis with secretome mass spectrometry and phylogenetic trees, we provide evidence for that plant cell wall degrading enzymes of higher fungi share a common ancestor with enzymes from aerobic ancient fungi. Sequence analysis (HotPep, confirmed by dbCAN-HMM models) enabled prediction of enzyme function directly from sequence. For the first time, oxidative enzymes are described here in early lineage fungi (Chytridiomycota & Cryptomycota), which supports the conceptually new understanding that fungal LPMOs were also present in the early evolution of the Fungal Kingdom. Phylogenetic analysis of fungal AA9 proteins suggests an LPMO-common-ancestor with Ascomycetes and Basidiomycetes and describes a new clade of AA9s. We identified two very strong biomass degraders, Rhizophlyctis rosea (soil-inhabiting) and Neocallimastix californiae (rumen), with a rich spectrum of cellulolytic, xylanolytic and pectinolytic enzymes, characteristically including several different enzymes with the same function. Their secretome composition suggests horizontal gene transfer was involved in transition to terrestrial and rumen habitats. Methods developed for recombinant production and protein characterization of enzymes from zoosporic fungi pave the way for biotechnological exploitation of unique enzymes from early lineage fungi with potential to contribute to improved biomass conversion. The phyla of ancient fungi through evolution have developed to be very different and together they constitute a rich enzyme discovery pool.  相似文献   
55.

Background

Lytic polysaccharide monooxygenases are important enzymes for the decomposition of recalcitrant biological macromolecules such as plant cell wall and chitin polymers. These enzymes were originally designated glycoside hydrolase family 61 and carbohydrate-binding module family 33 but are now classified as auxiliary activities 9, 10 and 11 in the CAZy database. To obtain a systematic analysis of the divergent families of lytic polysaccharide monooxygenases we used Peptide Pattern Recognition to divide 5396 protein sequences resembling enzymes from families AA9 (1828 proteins), AA10 (2799 proteins) and AA11 (769 proteins) into subfamilies.

Results

The results showed that the lytic polysaccharide monooxygenases have two conserved regions identified by conserved peptides specific for each AA family. The peptides were used for in silico PCR discovery of the lytic polysaccharide monooxygenases in 79 fungal and 95 bacterial genomes. The bacterial genomes encoded 0 – 7 AA10s (average 0.6). No AA9 or AA11 were found in the bacteria. The fungal genomes encoded 0 – 40 AA9s (average 7) and 0 – 15 AA11s (average 2) and two of the fungi possessed a gene encoding a putative AA10. The AA9s were mainly found in plant cell wall-degrading asco- and basidiomycetes in agreement with the described role of AA9 enzymes. In contrast, the AA11 proteins were found in 36 of the 39 ascomycetes and in only two of the 32 basidiomycetes and their abundance did not correlate to the degradation of cellulose and hemicellulose.

Conclusions

These results provides an overview of the sequence characteristics and occurrence of the divergent AA9, AA10 and AA11 families and pave the way for systematic investigations of the of lytic polysaccharide monooxygenases and for structure-function studies of these enzymes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1601-6) contains supplementary material, which is available to authorized users.  相似文献   
56.
Nucleotide-binding and oligomerization domain (NOD)-like receptors constitute a first line of defense against invading bacteria. X-linked Inhibitor of Apoptosis (XIAP) is implicated in the control of bacterial infections, and mutations in XIAP are causally linked to immunodeficiency in X-linked lymphoproliferative syndrome type-2 (XLP-2). Here, we demonstrate that the RING domain of XIAP is essential for NOD2 signaling and that XIAP contributes to exacerbation of inflammation-induced hepatitis in experimental mice. We find that XIAP ubiquitylates RIPK2 and recruits the linear ubiquitin chain assembly complex (LUBAC) to NOD2. We further show that LUBAC activity is required for efficient NF-κB activation and secretion of proinflammatory cytokines after NOD2 stimulation. Remarkably, XLP-2-derived XIAP variants have impaired ubiquitin ligase activity, fail to ubiquitylate RIPK2, and cannot facilitate NOD2 signaling. We conclude that XIAP and LUBAC constitute essential ubiquitin ligases in NOD2-mediated inflammatory signaling and propose that deregulation of NOD2 signaling contributes to XLP-2 pathogenesis.  相似文献   
57.
58.
59.
60.
Massive feeding in ectothermic vertebrates causes changes in metabolism and acid-base and respiratory parameters. Most investigations have focused on only one aspect of these complex changes, and different species have been used, making comparison among studies difficult. The purpose of the present study was, therefore, to provide an integrative study of the multiple physiological changes taking place after feeding. Bullfrogs (Rana catesbeiana) partly submerged in water were fed meals (mice or rats) amounting to approximately (1)/(10) of their body weight. Oxygen consumption increased and peaked at a value three times the predigestive level 72-96 h after feeding. Arterial PO(2) decreased slightly during digestion, whereas hemoglobin-bound oxygen saturation was unaffected. Yet, arterial blood oxygen content was pronouncedly elevated because of a 60% increase in hematocrit, which appeared mediated via release of red blood cells from the spleen. Gastric acid secretion was associated with a 60% increase in plasma HCO3(-) concentration ([HCO3(-)]) 48 h after feeding. Arterial pH only increased from 7.86 to 7.94, because the metabolic alkalosis was countered by an increase in PCO(2) from 10.8 to 13.7 mm Hg. Feeding also induced a small intracellular alkalosis in the sartorius muscle. Arterial pH and HCO3(-) returned to control values 96-120 h after feeding. There was no sign of anaerobic energy production during digestion as plasma and tissue lactate levels remained low and intracellular ATP concentration stayed high. However, phosphocreatine was reduced in the sartorius muscle and ventricle 48 h after feeding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号