首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   19篇
  2019年   2篇
  2018年   4篇
  2017年   5篇
  2016年   3篇
  2015年   5篇
  2014年   5篇
  2013年   5篇
  2012年   9篇
  2011年   5篇
  2010年   3篇
  2009年   6篇
  2008年   3篇
  2007年   4篇
  2006年   6篇
  2004年   3篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   5篇
  1999年   9篇
  1998年   9篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   6篇
  1991年   2篇
  1990年   5篇
  1989年   4篇
  1988年   6篇
  1987年   4篇
  1986年   6篇
  1985年   8篇
  1984年   4篇
  1983年   2篇
  1982年   6篇
  1981年   3篇
  1980年   1篇
  1979年   8篇
  1978年   2篇
  1977年   5篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   4篇
  1971年   1篇
  1969年   2篇
  1968年   1篇
  1948年   1篇
排序方式: 共有201条查询结果,搜索用时 437 毫秒
81.
Kinetics of veratridine action on Na channels of skeletal muscle   总被引:15,自引:8,他引:7       下载免费PDF全文
Veratridine bath-applied to frog muscle makes inactivation of INa incomplete during a depolarizing voltage-clamp pulse and leads to a persistent veratridine-induced Na tail current. During repetitive depolarizations, the size of successive tail currents grows to a plateau and then gradually decreases. When pulsing is stopped, the tail current declines to zero with a time constant of approximately 3 s. Higher rates of stimulation result in a faster build-up of the tail current and a larger maximum value. I propose that veratridine binds only to open channels and, when bound, prevents normal fast inactivation and rapid shutting of the channel on return to rest. Veratridine-modified channels are also subject to a "slow" inactivation during long depolarizations or extended pulse trains. At rest, veratridine unbinds with a time constant of approximately 3 s. Three tests confirm these hypotheses: (a) the time course of the development of veratridine-induced tail currents parallels a running time integral of gNa during the pulse; (b) inactivating prepulses reduce the ability to evoke tails, and the voltage dependence of this reduction parallels the voltage dependence of h infinity; (c) chloramine-T, N-bromoacetamide, and scorpion toxin, agents that decrease inactivation in Na channels, each greatly enhance the tail currents and alter the time course of the appearance of the tails as predicted by the hypothesis. Veratridine-modified channels shut during hyperpolarizations from -90 mV and reopen on repolarization to -90 mV, a process that resembles normal activation gating. Veratridine appears to bind more rapidly during larger depolarizations.  相似文献   
82.
The structure of insulin receptors, solubilized from rat skeletal muscle and liver, was studied. The alpha subunit was identified by specific cross-linking to A14 125I-insulin with disuccinimidyl suberate. Muscle- and liver-derived alpha subunits migrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a Mr of 131,000 and 135,000, respectively. There was no significant difference in insulin binding affinity. Treatment of cross-linked, immunoprecipitated receptors with either neuraminidase or endoglycosidase H decreased the Mr of muscle- and liver-derived alpha subunits but did not affect the difference in Mr. Autophosphorylated beta subunits migrated with a Mr of 98,000 for muscle and 101,000 for liver. After partial V8 digestion of autophosphorylated, immunoprecipitated receptors the major phosphopeptide fragment migrated on SDS-PAGE at Mr 57,000 from muscle and 60,000 from liver. Glycosidase digestion of autophosphorylated receptors suggested that Mr heterogeneity was due in part to differences in the sialic acid content of beta subunits. Muscle and liver are the major target organs of insulin; the apparent heterogeneity of insulin receptor structure may be relevant to tissue-specific differences in insulin action.  相似文献   
83.
Permanent mounting of fourth instar mosquito larvae is essential for identifying Aedes spp. This procedure requires extensive exposure to xylene, a clearing agent in the mounting process. We investigated wintergreen oil as a substitute for xylene. Five hundred larvae were mounted on slides to evaluate shrinkage or expansion of specimens after clearing using xylene or wintergreen oil. We examined the ventral brush and siphonal hair tufts for species identification and for preservation of morphological characteristics after clearing specimens in xylene or wintergreen oil. Shrinkage of the length of whole larvae and width of the head, thorax and abdomen after mounting was significantly greater after clearing with xylene than with wintergreen oil. The length of the comb scale nearest the ventral brush was similar for both clearing agents. The clarity of the specimens after mounting was improved by clearing with wintergreen oil, but the integrity of the ventral brush and siphonal hair tufts were similar for both clearing agents.  相似文献   
84.
85.
86.
Insulin receptor substrate-1 (IRS-1) is a highly phosphorylated adaptor protein critical to insulin and IGF-1 receptor signaling. Ser/Thr kinases impact the metabolic and mitogenic effects elicited by insulin and IGF-1 through feedback and feed forward regulation at the level of IRS-1. Ser/Thr residues of IRS-1 are also O-GlcNAc-modified, which may influence the phosphorylation status of the protein. To facilitate the understanding of the functional effects of O-GlcNAc modification on IRS-1-mediated signaling, we identified the sites of O-GlcNAc modification of rat and human IRS-1. Tandem mass spectrometric analysis of IRS-1, exogenously expressed in HEK293 cells, revealed that the C terminus, which is rich in docking sites for SH2 domain-containing proteins, was O-GlcNAc-modified at multiple residues. Rat IRS-1 was O-GlcNAc-modified at Ser914, Ser1009, Ser1036, and Ser1041. Human IRS-1 was O-GlcNAc-modified at Ser984 or Ser985, at Ser1011, and possibly at multiple sites within residues 1025–1045. O-GlcNAc modification at a conserved residue in rat (Ser1009) and human (Ser1011) IRS-1 is adjacent to a putative binding motif for the N-terminal SH2 domains of p85α and p85β regulatory subunits of phosphatidylinositol 3-kinase and the tyrosine phosphatase SHP2 (PTPN11). Immunoblot analysis using an antibody generated against human IRS-1 Ser1011 GlcNAc further confirmed the site of attachment and the identity of the +203.2-Da mass shift as β-N-acetylglucosamine. The accumulation of IRS-1 Ser1011 GlcNAc in HEPG2 liver cells and MC3T3-E1 preosteoblasts upon inhibition of O-GlcNAcase indicates that O-GlcNAcylation of endogenously expressed IRS-1 is a dynamic process that occurs at normal glucose concentrations (5 mm). O-GlcNAc modification did not occur at any known or newly identified Ser/Thr phosphorylation sites and in most cases occurred simultaneously with phosphorylation of nearby residues. These findings suggest that O-GlcNAc modification represents an additional layer of posttranslational regulation that may impact the specificity of effects elicited by insulin and IGF-1.Insulin receptor substrate-1 (IRS-1)1 is a highly phosphorylated adaptor protein critical to insulin and IGF-1 receptor signaling. Many of the metabolic and mitogenic effects elicited by insulin and IGF-1 are mediated and modulated by posttranslational modifications of IRS-1, and tight regulation at the posttranslational level is crucial for maintaining insulin sensitivity and controlling growth factor-induced proliferation. Following hormonal stimulation, IRS-1 is phosphorylated by the receptor tyrosine kinases creating SH2 domain docking sites for downstream binding partners including the p85 regulatory subunits of phosphatidylinositol 3-kinase, Grb2, and the tyrosine phosphatase SHP2 (PTPN11) (1). Binding of p85 phosphatidylinositol 3-kinase and Grb2 activate the PI3K/Akt and Ras-MAPK pathways, respectively, whereas binding of SHP2 results in tyrosine dephosphorylation and signal attenuation (2). Positive and negative feedback regulation by Ser/Thr kinases, such as Akt (3), c-Jun N-terminal kinase (JNK) (4), S6K (5), and ERK (6), impact the interactions of IRS-1 with SH2 domain proteins and the receptor thereby affecting the duration and outcome of the signal. IRS-1 has been described as a central node for the integration of information regarding the nutrient and stress status of the cell (7). This information is encoded by site-specific phosphorylation by a number of kinases that regulate the specificity of effects that are elicited following receptor stimulation. Many sites of Ser/Thr phosphorylation have been identified on IRS-1, and cross-talk among Tyr and Ser/Thr phosphorylations at specific residues is evidence of dynamic and complex posttranslational regulation (8, 9). Inappropriate phosphorylation of IRS-1 resulting in the disruption of interactions of IRS-1 with binding partners is implicated in the development of insulin resistance (10) and altered IGF-1 signaling in breast cancer tissue (11, 12).In addition to phosphorylation, Ser/Thr residues in IRS-1 are also dynamically modified by GlcNAc in a nutrient-responsive manner. As opposed to a negatively charged phosphate group, O-GlcNAcylation imparts a bulky, hydrophilic, electrostatically neutral moiety to Ser/Thr residues. The enzymes responsible for the incorporation and removal of the monosaccharide from proteins, O-GlcNAc-transferase and O-GlcNAcase, respectively, are localized in the cytoplasm and the nucleus of all eukaryotic cells (13, 14). Recent studies suggest that the activity of O-GlcNAc-transferase is regulated by insulin (15) and that localization of O-GlcNAc-transferase to the membrane is driven by direct association with phosphatidylinositide 3-phosphate (16). The abundance of O-GlcNAc modification on many proteins in the insulin signaling pathway increases with sustained high glucose and chronic insulin stimulation, and elevated O-GlcNAc modification of IRS-1 correlates with the development of insulin resistance in multiple cell types including 3T3-L1 adipocytes (17, 18), MIN6 pancreatic beta cells (19), Fao rat hepatoma cells (16), human aortic endothelial cells (20), and skeletal muscle (21). The impact of O-GlcNAcylation on insulin signaling and diabetic complications was reviewed recently (22, 23). The direct effect of O-GlcNAc modification on signaling via IRS-1 is not known because conditions that mimic those in the uncontrolled diabetic patient may also result in phosphorylation of IRS-1 at inhibitory sites (16, 24) and O-GlcNAc modification of other proteins in the insulin signaling pathway, such as the insulin receptor, Akt (18), FoxO (25), AMP-activated protein kinase (26), and β-catenin (17).To elucidate site-specific effects of O-GlcNAc modification on IRS-1-mediated signal transduction, we identified the sites of O-GlcNAc modification of rat and human IRS-1 by tandem mass spectrometry. To facilitate detection of the O-GlcNAc-modified peptides and assign the sites of modification, CID coupled with neutral loss-triggered MS3 and electron transfer dissociation (ETD) (27) tandem spectrometric approaches were used. Fragmentation of O-GlcNAc-modified peptides by ETD did not destroy the labile O-linkage (28) permitting direct detection of these peptides by the database searching algorithm ProteinProspector2 (29). O-GlcNAc modification occurred in close proximity to multiple SH2 domain binding motifs and within a region of IRS-1 shown previously to interact with the insulin and IGF-1 receptors (30).  相似文献   
87.

Background

Female genital tuberculosis is an uncommon disease that is rarely diagnosed in developed countries.

Case presentation

A 61-year-old postmenopausal woman who had undergone surgery and treated with adjuvant chemotherapy for infiltrating ductal carcinoma of the breast five years ago, presented with bloody vaginal discharge, fatigue, weight loss, and low grade fevers at night for two months. Histological examination of the endometrium, done based on the suspicion of a second primary cancer due to the tamoxifen therapy, revealed a granulomatous reaction. Liquid and solid mycobacterial cultures of the tissues were performed. Although the acid fast staining was negative, the liquid culture was positive for Mycobacterium tuberculosis. Involvement of other systems was not detected. The patient was treated with a three-drug antituberculosis regimen for 9 months and recovered fully.

Conclusion

Female genital tuberculosis is a rare but curable disease that should be included in the differential diagnosis of women with menstrual problems. Early diagnosis is important and may prevent unnecessary invasive procedures for the patient.  相似文献   
88.
89.
Catechol 2, 3-dioxygenase is present in several types of bacteria and undergoes degradation of environmental pollutants through an important key biochemical pathways. Specifically, this enzyme cleaves aromatic rings of several environmental pollutants such as toluene, xylene, naphthalene and biphenyl derivatives. Hence, the importance of Catechol 2, 3-dioxygenase and its role in the degradation of environmental pollutants made us to predict the three-dimensional structure of Catechol 2, 3-dioxygenase from Burkholderia cepacia. The 10ns molecular dynamics simulation was carried out to check the stability of the modeled Catechol 2, 3- dioxygenase. The results show that the model was energetically stable, and it attains their equilibrium within 2000 ps of production MD run. The docking of various petroleum hydrocarbons into the Catechol 2,3-dioxygenase reveals that the benzene, O-xylene, Toluene, Fluorene, Naphthalene, Carbazol, Pyrene, Dibenzothiophene, Anthracene, Phenanthrene, Biphenyl makes strong hydrogen bond and Van der waals interaction with the active site residues of H150, L152, W198, H206, H220, H252, I254, T255, Y261, E271, L276 and F309. Free energy of binding and estimated inhibition constant of these compounds demonstrates that they are energetically stable in their binding cavity. Chrysene shows positive energy of binding in the active site atom of Fe. Except Pyrene all the substrates made close contact with Fe atom by the distance ranges from 1.67 to 2.43 Å. In addition to that, the above mentioned substrate except pyrene all other made π-π stacking interaction with H252 by the distance ranges from 3.40 to 3.90 Å. All these docking results reveal that, except Chrysene all other substrate has good free energy of binding to hold enough in the active site and makes strong VdW interaction with Catechol-2,3-dioxygenase. These results suggest that, the enzyme is capable of catalyzing the above-mentioned substrate.  相似文献   
90.
Type 2 diabetes and tooth loss are linked both epidemiologically and pathophysiologically. We applied label-free differential protein expression analysis using multidimensional liquid chromatography/tandem mass spectrometry (2D-LC-MS/MS) to explore the proteomic profile of saliva samples collected from selected type 2 diabetic edentulous patients and non-diabetic controls. Ninety-six peptides corresponding to 52 proteins were differentially expressed between the diabetic edentulous patients and controls (p < 0.05). Some diabetes-related inflammatory biomarkers including glyceraldehyde-3-phosphate dehydrogenase and serum amyloid A were detected with levels increased in diabetic samples. Other biomarkers including amylase, palate, lung and nasal epithelium associated protein (PLUNC), and serotransferrin levels were decreased in diabetic samples. In contrast with previous findings, salivary carbonic anhydrase 6 and alpha-2 macroglobulin levels, however, were decreased in this diabetic patient population. Cluster analysis and principle component analysis demonstrated a differential pattern of protein biomarker expression between diabetic and control subjects. Western blot analysis was completed to confirm the relatively lower expression level of two biomarkers, including PLUNC and amylase in the diabetic group compared to control subjects. The presence of salivary biomarkers specific for diabetes in edentulous subjects mimics those in serum, especially those related to inflammatory/lipid metabolism. While this exploratory study requires further validation with a larger population, it provides proof-of-principle for salivary proteomics for edentulous subjects with diabetes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号