首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2570篇
  免费   344篇
  国内免费   1篇
  2915篇
  2021年   26篇
  2020年   21篇
  2017年   21篇
  2016年   40篇
  2015年   73篇
  2014年   57篇
  2013年   102篇
  2012年   93篇
  2011年   107篇
  2010年   67篇
  2009年   51篇
  2008年   103篇
  2007年   103篇
  2006年   95篇
  2005年   96篇
  2004年   91篇
  2003年   91篇
  2002年   107篇
  2001年   76篇
  2000年   75篇
  1999年   66篇
  1998年   27篇
  1997年   33篇
  1996年   24篇
  1995年   32篇
  1994年   29篇
  1993年   23篇
  1992年   54篇
  1991年   56篇
  1990年   50篇
  1989年   48篇
  1988年   70篇
  1987年   65篇
  1986年   57篇
  1985年   51篇
  1984年   32篇
  1983年   52篇
  1982年   34篇
  1981年   36篇
  1980年   26篇
  1979年   32篇
  1978年   46篇
  1977年   36篇
  1976年   29篇
  1975年   37篇
  1974年   35篇
  1973年   24篇
  1972年   21篇
  1970年   29篇
  1969年   25篇
排序方式: 共有2915条查询结果,搜索用时 15 毫秒
61.
Pathogen access to host nutrients in infected tissues is fundamental for pathogen growth and virulence, disease progression, and infection control. However, our understanding of this crucial process is still rather limited because of experimental and conceptual challenges. Here, we used proteomics, microbial genetics, competitive infections, and computational approaches to obtain a comprehensive overview of Salmonella nutrition and growth in a mouse typhoid fever model. The data revealed that Salmonella accessed an unexpectedly diverse set of at least 31 different host nutrients in infected tissues but the individual nutrients were available in only scarce amounts. Salmonella adapted to this situation by expressing versatile catabolic pathways to simultaneously exploit multiple host nutrients. A genome-scale computational model of Salmonella in vivo metabolism based on these data was fully consistent with independent large-scale experimental data on Salmonella enzyme quantities, and correctly predicted 92% of 738 reported experimental mutant virulence phenotypes, suggesting that our analysis provided a comprehensive overview of host nutrient supply, Salmonella metabolism, and Salmonella growth during infection. Comparison of metabolic networks of other pathogens suggested that complex host/pathogen nutritional interfaces are a common feature underlying many infectious diseases.  相似文献   
62.
Proton magnetic resonance spectra at 100 MHz were obtained for water-soluble and water-insoluble glucans from 11 strains of Streptococcus mutans. The percentages of α-D-(1→6) and non-α-D-(1→6)-, namely, α-D-(1→3)-, linkages were calculated from the anomeric-proton resonances in the 4.7-4.8 and 5.0-5.1 p.p.m. range, respectively. The average content of α-D(1→6) linkages in the polymer fractions precipitating from solution during synthesis of the glucans was generally much lower than that of fractions remaining in solution. The frequent appearance of the α-D-(1→3) resonances as doublets in the spectra suggested neighboring-group effects among the possible α-D-(1→3) and α-D-(1→6) linkage-configurations. These effects were confirmed from 100-MHz spectra of products of a dextranase-degraded, water-insoluble glucan, and a 270-MHz spectrum of an undegraded glucan. It was thus possible to assign the doublet resonances to α-D-(1→3), homogeneous, heterogeneous, and branch configurations, although complete differentiation among proportions of each configuration in the glucan chains could not be achieved.  相似文献   
63.
Summary In the present study the localization of the cGMP production in response to the vasodilators acetylcholine (ACh) and sodium nitroprusside (SNP) and to atrial natriuretic factor (ANF) was studied in the isolated perfused rat kidney using cGMP immunocytochemistry. After ACh (0.3 M) infusion increased cGMP immunoreactivity was found in kidney interlobar and segmental arteries and in glomeruli. SNP (1 M) and ANF (0.01 M) elevated cGMP staining in the same elements of the kidney as ACh. In the glomeruli ACh and SNP stimulated cGMP production in mesangial cells whereas ANF stimulated cGMP production in epithelial cells (podocytes). However, SNP at higher doses (10 M) stimulated cGMP production not only in glomeruli, but also in interstitial cells throughout the cortex. In addition SNP and ANF increased cGMP production in the medulla.  相似文献   
64.
Signaling from rhombomeres 5 and 6 of the hindbrain is thought to be important for inner ear patterning. In Noggin −/− embryos, the gross anatomy of the inner ear is distorted and malformed, with cochlear duct outgrowth and coiling most affected. We attributed these defects to a caudal shift of the rhombomeres caused by the shortened body axis and the kink in the neural tube. To test the hypothesis that a caudal shift of the rhombomeres affects inner ear development, we surgically generated chicken embryos in which rhombomeres 5 and 6 were similarly shifted relative to the position of the inner ears, as in Noggin mutants. All chicken embryos with shifted rhombomeres showed defects in cochlear duct formation indicating that signaling from rhombomeres 5 and 6 is important for cochlear duct patterning in both chicken and mice. In addition, the size of the otic capsule is increased in Noggin −/− mutants, which most likely is due to unopposed BMP signaling for chondrogenesis in the peri-otic mesenchyme.  相似文献   
65.
66.
67.
Ventilation is influenced by the acid-base status of the brain extracellular fluids (ECF). CO2 may affect ventilation independent of changes in H+. Whether the acidic condition directly alters neuronal firing or indirectly alters neuronal firing through changes in endogenous neurotransmitters remains unclear. In this work, ventriculocisternal perfusion (VCP) was used in anesthetized (pentobarbital sodium, 30 mg/kg) spontaneously breathing dogs to study the ventilatory effects of acetylcholine (ACh), eucapnic acidic (pH approximately 7.0) cerebrospinal fluid (CSF), and hypercapnic acidic (pH approximately 7.1) CSF in the absence and presence of atropine (ATR). Each animal served as its own control. Base line was defined during VCP with control mock CSF (pH approximately 7.4). With ATR (4.8 mM) there was an insignificant downward trend in minute ventilation (VE). ACh (6.6 mM) increased VE 53% (n = 12, P less than 0.01), eucapnic acidic CSF increased VE 41% (n = 12, P less than 0.01), and hypercapnic acidic CSF increased VE 47% (n = 6, P less than 0.01). These positive effects on ventilation were not seen in the presence of ATR. This suggests that acidic brain ECF activates ventilatory neurons through muscarinic cholinergic mechanisms. Higher concentrations of ACh increased ventilation in a concentration-dependent manner. Higher concentrations of ATR decreased ventilation progressively, resulting in apnea. The results suggest that ACh plays a significant role in the central augmentation of ventilation when the brain ECF is made acidic by either increasing CSF PCO2 or decreasing CSF bicarbonate.  相似文献   
68.
69.
In the first study, we tested the ability of a commercial feed additive (OmniGen-AF) to affect markers of innate immunity in immunosuppressed sheep and the ability of a pathogen challenge (mould) to affect the immune response to the additive. Treatments consisted of (1) control, (2) immunosuppressed with dexamethasone (DEX), (3) immunosuppressed plus the feed additive, (4) immunosuppressed plus Aspergillus fumigatus and (5) immunosuppressed, A. fumigatus and the additive. Animal health was monitored and indexes of innate immunity (neutrophil L-selectin and interleukin-1β (IL-1β)) were collected. DEX caused immunosuppression (i.e. reduced abundance of neutrophil L-selectin and IL-1β). This immunosuppressive effect was countered by the provision of the additive in the ration. Provision of mould in the ration increased the ability of the additive to regulate markers of innate immune function. A second study was completed to re-assess the properties of the additive and other feed products. The study consisted of seven treatments: (1) immunosuppressed, (2) immunosuppressed with additive, (3) immunosuppressed with additive in pelleted form (low-temperature pellet) and (4) immunosuppressed with additive in a high-temperature pellet. The remaining three treatments assessed abilities of three other additives to regulate markers of innate immune function. In this study, OmniGen-AF increased expression of neutrophil L-selectin abundance in immunosuppressed animals and this was unaffected by the pelleting temperature. None of the other additives affected markers of innate immunity. In these studies we discovered mechanisms by which a feed product may affect the immune function of ruminant livestock. The product countered DEX-dependent down-regulation of markers of innate immune function and its actions were enhanced by the presence of pathogen (mould) in the ration.  相似文献   
70.
Thyroid autoregulation has been linked to an organified iodocompound. Since several iodolipids are produced by the gland their possible role in thyroid autoregulation was examined. The following pure synthetic compounds were prepared: 1) 14-iodo-15-hydroxy-5,8,11-eicosatrienoic acid (I-OH-A); 2) its omega lactone (IL-omega); 3) 5-hydroxy-6-iodo-8,11,14-eicosatrienoic acid delta lactone (IL-delta). Their action on iodine metabolism was studied. Iodine uptake was measured in calf thyroid slices. At 10(-4)M I-OH-A caused a 64% decrease in the T/M ratio, while IL-omega inhibited it by 36% and IL-delta was without effect. At 10(-5)M the inhibition was 44% for I-OH-A and 19% for IL-omega, while T3 was without action. A possible isotopic dilution effect was excluded, and no change in iodine efflux was observed. The inhibition by I-OH-A of iodide uptake was observed after only 15 min preincubation. This compound also decreased 125I accumulation in rats. In calf thyroid slices, I-OH-A at 10(-4)M, inhibited PB125I formation by 80%, IL-omega by 62% and IL-delta by 37%. T3 and arachidonic acid were without action. I-OH-A also caused a dose-dependent inhibition of TSH-stimulated iodide organification. The present results demonstrate, for the first time, that iodinated derivatives of arachidonic acid inhibit thyroid function and mimic the effect of iodide on thyroid autoregulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号