首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   777篇
  免费   68篇
  2023年   6篇
  2022年   7篇
  2021年   15篇
  2020年   7篇
  2019年   4篇
  2018年   9篇
  2017年   12篇
  2016年   11篇
  2015年   32篇
  2014年   30篇
  2013年   47篇
  2012年   46篇
  2011年   39篇
  2010年   19篇
  2009年   32篇
  2008年   32篇
  2007年   27篇
  2006年   26篇
  2005年   32篇
  2004年   19篇
  2003年   24篇
  2002年   16篇
  2001年   28篇
  2000年   33篇
  1999年   22篇
  1998年   20篇
  1997年   13篇
  1996年   10篇
  1995年   8篇
  1994年   9篇
  1993年   8篇
  1992年   8篇
  1991年   7篇
  1990年   7篇
  1989年   10篇
  1988年   6篇
  1987年   8篇
  1983年   7篇
  1982年   5篇
  1981年   5篇
  1980年   4篇
  1978年   12篇
  1976年   4篇
  1975年   6篇
  1974年   5篇
  1973年   12篇
  1971年   4篇
  1969年   8篇
  1967年   6篇
  1938年   4篇
排序方式: 共有845条查询结果,搜索用时 31 毫秒
51.
Tang N  Muller JG  Burrows CJ  Rokita SE 《Biochemistry》1999,38(50):16648-16654
The structural characteristics of Z-DNA were used to challenge the selectivity of guanine oxidation promoted by nickel and cobalt reagents. Base pairing and stacking within all helical structures studied previously had hindered access to guanine and limited its reaction. However, the Z-helix uniquely retains high exposure of guanine N7. This exposure was sufficient to direct oxidation specifically to a plasmid insert -(CG)(13)AATT(CG)(13)- that adopted a Z-conformation under native supercoiling. An alternative insert -(CG)(7)- retained its B-conformation and demonstrated the expected lack of reactivity. For a nickel salen complex made from a particularly bulky ligand, preferential reaction shifted to the junctions within the Z-DNA insert as is common for large reagents. Inactivation of the nickel reagents by high-salt concentrations prevented parallel investigations of Z-DNA, formed by oligonucleotides. However, the activity of Co(2+) was minimally affected by salt and consequently confirmed the high reactivity of 5'-p(CG)(4) in its Z-conformation. These reagents may now be applied to a broad array of targets, since their structural specificity remains predictable for both complex and helical assemblies of nucleic acids.  相似文献   
52.
Epstein-Barr virus (EBV)-encoded oncogene latent membrane protein (LMP) 1, which is consistently expressed in multiple EBV-associated malignancies, has been proposed as a potential target antigen for any future vaccine designed to control these malignancies. However, the high degree of genetic variation in the LMP1 sequence has been considered a major impediment for its use as a potential immunotherapeutic target for the treatment of EBV-associated malignancies. In the present study, we have employed a highly efficient strategy, based on ex vivo functional assays, to conduct an extensive sequence-wide analysis of LMP1-specific T-cell responses in a large panel of healthy virus carriers of diverse ethnic origin and nasopharyngeal carcinoma patients. By comparing the frequencies of T cells specific for overlapping peptides spanning LMP1, we mapped a number of novel HLA class I- and class II-restricted LMP1 T-cell epitopes, including an epitope with dual HLA class I restriction. More importantly, extensive sequence analysis of LMP1 revealed that the majority of the T-cell epitopes were highly conserved in EBV isolates from Caucasian, Papua New Guinean, African, and Southeast Asian populations, while unique geographically constrained genetic variation was observed within one HLA A2 supertype-restricted epitope. These findings indicate that conserved LMP1 epitopes should be considered in designing epitope-based immunotherapeutic strategies against EBV-associated malignancies in different ethnic populations.  相似文献   
53.
Capillary malformation (CM), or "port-wine stain," is a common cutaneous vascular anomaly that initially appears as a red macular stain that darkens over years. CM also occurs in several combined vascular anomalies that exhibit hypertrophy, such as Sturge-Weber syndrome, Klippel-Trenaunay syndrome, and Parkes Weber syndrome. Occasional familial segregation of CM suggests that there is genetic susceptibility, underscored by the identification of a large locus, CMC1, on chromosome 5q. We used genetic fine mapping with polymorphic markers to reduce the size of the CMC1 locus. A positional candidate gene, RASA1, encoding p120-RasGAP, was screened for mutations in 17 families. Heterozygous inactivating RASA1 mutations were detected in six families manifesting atypical CMs that were multiple, small, round to oval in shape, and pinkish red in color. In addition to CM, either arteriovenous malformation, arteriovenous fistula, or Parkes Weber syndrome was documented in all the families with a mutation. We named this newly identified association caused by RASA1 mutations "CM-AVM," for capillary malformation-arteriovenous malformation. The phenotypic variability can be explained by the involvement of p120-RasGAP in signaling for various growth factor receptors that control proliferation, migration, and survival of several cell types, including vascular endothelial cells.  相似文献   
54.
Mature Pseudomonas aeruginosa biofilms form complex three-dimensional architecture and are tolerant of antibiotics and other antimicrobial compounds. In this work, an in vivo expression technology system, originally designed to study virulence-associated genes in complex mammalian environments, was used to identify genes up-regulated in P. aeruginosa grown to a mature (5-day) biofilm. Five unique cloned promoters unable to promote in vitro growth in the absence of purines after recovery from the biofilm environment were identified. The open reading frames downstream of the cloned promoter regions were identified, and knockout mutants were generated. Insertional mutation of PA5065, a homologue of Escherichia coli ubiB, was lethal, while inactivation of PA0240 (a porin homologue), PA3710 (a putative alcohol dehydrogenase), and PA3782 (a homologue of the Streptomyces griseus developmental regulator adpA) had no effect on planktonic growth but caused defects in biofilm formation in static and flowing systems. In competition experiments, mutants demonstrated reduced fitness compared with the parent strain, comprising less than 0.0001% of total biofilm cells after 5 days. Therefore, using in-biofilm expression technology, we have identified novel genes that do not affect planktonic growth but are important for biofilm formation, development, and fitness.  相似文献   
55.
56.
POCUS: mining genomic sequence annotation to predict disease genes   总被引:2,自引:0,他引:2  
Here we present POCUS (prioritization of candidate genes using statistics), a novel computational approach to prioritize candidate disease genes that is based on over-representation of functional annotation between loci for the same disease. We show that POCUS can provide high (up to 81-fold) enrichment of real disease genes in the candidate-gene shortlists it produces compared with the original large sets of positional candidates. In contrast to existing methods, POCUS can also suggest counterintuitive candidates.  相似文献   
57.
BACKGROUND: Leukaemia cells differ from their normal counterparts in that their ability to properly regulate survival, proliferation, differentiation, and apoptosis is aberrant. Understanding the molecular mechanisms controlling cell proliferation and developing therapeutic strategies to correct nonfunctional regulatory mechanisms are emerging areas of medical research. Ceramide, a metabolite of membrane sphingomyelin hydrolysis, has recently emerged as a key regulator of cellular proliferation, differentiation, and apoptosis in leukaemia cells. METHODS: Leukaemia cell lines were treated with a biologically active analogue of ceramide, C(2)-ceramide. Cell cycle status was assessed flow cytometrically using propidium iodide. Induction of apoptosis was confirmed by annexin V staining of externalised phosphatidylserine and retinoblastoma activation was determined by Western blotting. RESULTS: C(2)-ceramide induced activation of retinoblastoma tumour suppressor protein, G(0)/G(1) cell cycle arrest, or apoptosis in leukaemia cell lines. In addition, these effects differed depending upon cell type, thus confirming the pleiotropic nature of the ceramide signalling pathway. Most cells studied responded to exogenous C(2)-ceramide by entering growth arrest, evidently resulting from activation of retinoblastoma protein, and by displaying some degree of apoptosis. CONCLUSIONS: Taken together, these findings suggest that signalling via ceramide has novel therapeutic applications for treatment of leukaemia.  相似文献   
58.
8-Oxoguanine (8-oxoG), induced by reactive oxygen species and arguably one of the most important mutagenic DNA lesions, is prone to further oxidation. Its one-electron oxidation products include potentially mutagenic guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) because of their mispairing with A or G. All three oxidized base-specific DNA glycosylases of Escherichia coli, namely endonuclease III (Nth), 8-oxoG-DNA glycosylase (MutM) and endonuclease VIII (Nei), excise Gh and Sp, when paired with C or G in DNA, although Nth is less active than the other two. MutM prefers Sp and Gh paired with C (kcat/Km of 0.24–0.26 min–1 nM–1), while Nei prefers G over C as the complementary base (kcat/Km 0.15–0.17 min–1 nM–1). However, only Nei efficiently excises these paired with A. MutY, a 8-oxoG·A(G)-specific A(G)-DNA glycosylase, is inactive with Gh(Sp)·A/G-containing duplex oligonucleotide, in spite of specific affinity. It inhibits excision of lesions by MutM from the Gh·G or Sp·G pair, but not from Gh·C and Sp·C pairs. In contrast, MutY does not significantly inhibit Nei for any Gh(Sp) base pair. These results suggest a protective function for MutY in preventing mutation as a result of A (G) incorporation opposite Gh(Sp) during DNA replication.  相似文献   
59.
Glucosidase I is an important enzyme in N-linked glycoprotein processing, removing specifically distal alpha-1,2-linked glucose from the Glc3Man9GlcNAc2 precursor after its en bloc transfer from dolichyl diphosphate to a nascent polypeptide chain in the endoplasmic reticulum. We have identified a glucosidase I defect in a neonate with severe generalized hypotonia and dysmorphic features. The clinical course was progressive and was characterized by the occurrence of hepatomegaly, hypoventilation, feeding problems, seizures, and fatal outcome at age 74 d. The accumulation of the tetrasaccharide Glc(alpha1-2)Glc(alpha1-3)Glc(alpha1-3)Man in the patient's urine indicated a glycosylation disorder. Enzymological studies on liver tissue and cultured skin fibroblasts revealed a severe glucosidase I deficiency. The residual activity was <3% of that of controls. Glucosidase I activities in cultured skin fibroblasts from both parents were found to be 50% of those of controls. Tissues from the patient subjected to SDS-PAGE followed by immunoblotting revealed strongly decreased amounts of glucosidase I protein in the homogenate of the liver, and a less-severe decrease in cultured skin fibroblasts. Molecular studies showed that the patient was a compound heterozygote for two missense mutations in the glucosidase I gene: (1) one allele harbored a G-->C transition at nucleotide (nt) 1587, resulting in the substitution of Arg at position 486 by Thr (R486T), and (2) on the other allele a T-->C transition at nt 2085 resulted in the substitution of Phe at position 652 by Leu (F652L). The mother was heterozygous for the G-->C transition, whereas the father was heterozygous for the T-->C transition. These base changes were not seen in 100 control DNA samples. A causal relationship between the alpha-glucosidase I deficiency and the disease is postulated.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号