首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   8篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   5篇
  2011年   3篇
  2010年   3篇
  2009年   5篇
  2008年   4篇
  2007年   6篇
  2006年   4篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   5篇
  2001年   4篇
  2000年   1篇
  1999年   6篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1977年   1篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1968年   1篇
  1965年   2篇
  1959年   1篇
排序方式: 共有121条查询结果,搜索用时 31 毫秒
71.
72.
73.
74.
The resection of DNA double-strand breaks (DSBs) to generate ssDNA tails is a pivotal event in the cellular response to these breaks. In the two-step model of resection, primarily elucidated in yeast, initial resection by Mre11-CtIP is followed by extensive resection by two distinct pathways involving Exo1 or BLM/WRN-Dna2. However, resection pathways and their exact contributions in humans in vivo are not as clearly worked out as in yeast. Here, we examined the contribution of Exo1 to DNA end resection in humans in vivo in response to ionizing radiation (IR) and its relationship with other resection pathways (Mre11-CtIP or BLM/WRN). We find that Exo1 plays a predominant role in resection in human cells along with an alternate pathway dependent on WRN. While Mre11 and CtIP stimulate resection in human cells, they are not absolutely required for this process and Exo1 can function in resection even in the absence of Mre11-CtIP. Interestingly, the recruitment of Exo1 to DNA breaks appears to be inhibited by the NHEJ protein Ku80, and the higher level of resection that occurs upon siRNA-mediated depletion of Ku80 is dependent on Exo1. In addition, Exo1 may be regulated by 53BP1 and Brca1, and the restoration of resection in BRCA1-deficient cells upon depletion of 53BP1 is dependent on Exo1. Finally, we find that Exo1-mediated resection facilitates a transition from ATM- to ATR-mediated cell cycle checkpoint signaling. Our results identify Exo1 as a key mediator of DNA end resection and DSB repair and damage signaling decisions in human cells.  相似文献   
75.

Background  

In moderate-throughput SNP genotyping there was a gap in the workflow, between choosing a set of SNPs and submitting their sequences to proprietary assay design software, which was not met by existing software. Retrieval and formatting of sequences flanking each SNP, prior to assay design, becomes rate-limiting for more than about ten SNPs, especially if annotated for repetitive regions and adjacent variations. We routinely process up to 50 SNPs at once.  相似文献   
76.
In Agrobacterium-mediated genetic transformation of cotton (Gossypium hirsutum L. cv. Coker 310FR) the frequency at which somatic embryos were converted to plantlets was significantly improved by subjecting the embryos to slow physical desiccation. We used Agrobacterium strain GV3101 containing the binary vector pGSFR with the nos-nptII gene for in vitro selection and the 35S gus-int fragment as a reporter to optimize the transformation protocol. Although the concentration of kanamycin was reduced during embryogenesis and embryo maturation, even at the lower levels somatic embryos were predominantly abnormal, showing hypertrophy and reduced or fused cotyledons or poor radicle ends. A majority of these embryos (more than 75%) were beta-glucuronidase (GUS)-positive. Embryos with an abnormal appearance showed a very poor conversion to plantlets. However, these embryos, when subjected to slow physical desiccation followed by transfer to fresh medium, regenerated single or multiple shoots from the cotyledonary end. These shoots could be grafted on wild-type seedling stocks in vitro, which, following their transfer to soil, developed normally and set seeds. Regenerated plants tested positive for the transgene by Southern analysis. An overall scheme for the high-frequency production of cotton transgenics from both normal and abnormal appearing somatic embryos is presented.  相似文献   
77.
We report in this study, the successful deployment of a double mutant acetolactate synthase gene (ALSdm, containing Pro 197 to Ser and Ser 653 to Asn substitutions) as an efficient in vitro selection marker for the development of transgenic plants in Brassica juncea (oilseed mustard). The ALS enzyme is inhibited by two categories of herbicides, sulfonylureas (e.g. chlorsulfuron) and imidazolinones (e.g. imazethapyr), while the mutant forms are resistant to the same. Three different selection agents (kanamycin, chlorsulfuron and imazethapyr) were tested for in vitro selection efficiency in two B. juncea cultivars, RLM198 and Varuna. For both the cultivars, higher transformation frequencies were obtained using chlorsulfuron (3.8 +/- 0.6% and 4.6 +/- 0.9% for RLM198 and Varuna, respectively) and imazethapyr (10.2 +/- 0.7% for RLM198 and 7.8 +/- 1.2% for Varuna) as compared to that obtained on kanamycin (3.1 +/- 0.2% and 2.8 +/- 0.5% for RLM198 and Varuna, respectively). Additionally, transformation frequencies were higher on imazethapyr than on chlorsulfuron for both the cultivars indicating that imidazolinones are better selective agents than sulfonylureas for the selection of mustard transgenics.  相似文献   
78.
DNA-dependent protein kinase (DNA-PK), consisting of Ku and DNA-PKcs subunits, is the key component of the non-homologous end-joining (NHEJ) pathway of DNA double strand break (DSB) repair. Although the kinase activity of DNA-PKcs is essential for NHEJ, thus far, no in vivo substrate has been conclusively identified except for an autophosphorylation site on DNA-PKcs itself (threonine 2609). Here we report the ionizing radiation (IR)-induced autophosphorylation of DNA-PKcs at a novel site, serine 2056, the phosphorylation of which is required for the repair of DSBs by NHEJ. Interestingly, IR-induced DNA-PKcs autophosphorylation is regulated in a cell cycle-dependent manner with attenuated phosphorylation in the S phase. In contrast, DNA replication-associated DSBs resulted in DNA-PKcs autophosphorylation and localization to DNA damage sites. These results indicate that although IR-induced DNA-PKcs phosphorylation is attenuated in the S phase, DNA-PKcs is preferentially activated by the physiologically relevant DNA replication-associated DSBs at the sites of DNA synthesis.  相似文献   
79.
Disturbances in the schedules of gene expression in developing interspecific fish hybrids have been used to draw inferences about the extent of gene regulatory divergence between species and about the degree to which this gene regulatory divergence is correlated with structural gene divergence, as estimated by genetic distance. Sperm from each of 10 different species representing six genera within the family Centrarchidae was used to fertilize eggs of the Florida largemouth bass (Micropterus salmoides floridanus). The genetic distances (D; Nei 1978) between the parental species used to form the hybrids ranged from 0.133 to 0.974. The developmental success and temporal patterns of gene expression of each of the hybrids were compared with those of the Florida largemouth bass. As the genetic distance between the paternal species and the Florida largemouth bass increased, there was a general decline in developmental success in the hybrid embryos as demonstrated by the observed reductions in the percentage of hatching and by progressively earlier and more extensive morphological abnormalities. Concomitantly, progressively more marked alterations in developmental schedules of expression of 15 enzyme loci occurred in the hybrids as the genetic distance between parental species increased. However, observed deviations from this trend for a few species may represent an uncoupling of the rates and modes of evolution of structural genes from those for genes regulating developmental processes.   相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号