首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   12篇
  2022年   2篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   13篇
  2012年   7篇
  2011年   9篇
  2010年   4篇
  2009年   2篇
  2008年   6篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   4篇
  2003年   7篇
  2002年   2篇
  2001年   2篇
  2000年   7篇
  1999年   3篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1992年   5篇
  1991年   5篇
  1990年   1篇
  1989年   5篇
  1988年   1篇
  1987年   5篇
  1986年   3篇
  1985年   9篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
  1941年   1篇
  1925年   1篇
排序方式: 共有166条查询结果,搜索用时 702 毫秒
81.
Nonmammalian glycan structures from helminths act as Th2 adjuvants. Some of these structures are also common on plant glycoproteins. We hypothesized that glycan structures present on peanut glycoallergens act as Th2 adjuvants. Peanut Ag (PNAg), but not deglycosylated PNAg, activated monocyte-derived dendritic cells (MDDCs) as measured by MHC/costimulatory molecule up-regulation, and by their ability to drive T cell proliferation. Furthermore, PNAg-activated MDDCs induced 2- to 3-fold more IL-4- and IL-13-secreting Th2 cells than immature or TNF/IL-1-activated MDDCs when cultured with naive CD4+ T cells. Human MDDCs rapidly internalized Ag in a calcium- and glycan-dependent manner consistent with recognition by C-type lectin. Dendritic cell (DC)-specific ICAM-grabbing nonintegrin (DC-SIGN) (CD209) was shown to recognize PNAg by enhanced uptake in transfected cell lines. To identify the DC-SIGN ligand from unfractionated PNAg, we expressed the extracellular portion of DC-SIGN as an Fc-fusion protein and used it to immunoprecipitate PNAg. A single glycoprotein was pulled down in a calcium-dependent manner, and its identity as Ara h 1 was proven by immunolabeling and mass spectrometry. Purified Ara h 1 was found to be sufficient for the induction of MDDCs that prime Th2-skewed T cell responses. Both PNAg and purified Ara h 1 induced Erk 1/2 phosphorylation of MDDCs, consistent with previous reports on the effect of Th2 adjuvants on DCs.  相似文献   
82.

Background

Neuroblastma cell lines contain a side-population of cells which express stemness markers. These stem-like cells may represent the potential underlying mechanism for resistance to conventional therapy and recurrence of neuroblastoma in patients.

Methodology/Principal Findings

To develop novel strategies for targeting the side-population of neurobastomas, we analyzed the effects of 13-cis-retinoic acid (RA) combined with the proteasome inhibitor MG132. The short-term action of the treatment was compared with effects after a 5-day recovery period during which both chemicals were withdrawn. RA induced growth arrest and differentiation of SH-SY5Y and SK-N-BE(2) neuroblastoma cell lines. Inhibition of the proteasome caused apoptosis in both cell lines, thus, revealing the critical role of this pathway in the regulated degradation of proteins involved in neuroblastoma proliferation and survival. The combination of RA with MG132 induced apoptosis in a dose-dependent manner, in addition to promoting G2/M arrest in treated cultures. Interestingly, expression of stem cell markers such as Nestin, Sox2, and Oct4 were reduced after the recovery period of combined treatment as compared with untreated cells or treated cells with either compound alone. Consistent with this, neurosphere formation was significantly impaired by the combined treatment of RA and MG132.

Conclusions

Given that stem-like cells are associated with resistant to conventional therapy and are thought to be responsible for relapse, our results suggest that dual therapy of RA and proteasome inhibitor might be beneficial for targeting the side-population of cells associated residual disease in high-risk neuroblastoma.  相似文献   
83.
Chalcidoidea (Hymenoptera) is extremely diverse with an estimated 500 000 species. We present the first phylogenetic analysis of the superfamily based on both morphological and molecular data. A web‐based, systematics workbench mx was used to score 945 character states illustrated by 648 figures for 233 morphological characters for a total of 66 645 observations for 300 taxa. The matrix covers 22 chalcidoid families recognized herein and includes 268 genera within 78 of 83 subfamilies. Morphological data were analysed alone and in combination with molecular data from ribosomal 18S (2105 bp) and 28S D2–D5 expansion regions (1812 bp). Analyses were analysed alone and in combined datasets using implied‐weights parsimony and likelihood. Proposed changes in higher classification resulting from the analyses include: (i) recognition of Eriaporidae, revised status; (ii) recognition of Cynipencyrtidae, revised status; (iii) recognition of Azotidae, revised status; (iv) inclusion of Sycophaginae in Agaonidae, revised status; (v) reclassification of Aphelinidae to include Aphelininae, Calesinae, Coccophaginae, Eretmocerinae and Eriaphytinae; (vi) inclusion of Cratominae and Panstenoninae within Pteromalinae (Pteromalidae), new synonymy; (vii) inclusion of Epichrysomallinae in Pteromalidae, revised status. At a higher level, Chalcidoidea was monophyletic, with Mymaridae the sister group of Rotoitidae plus the remaining Chalcidoidea. A eulophid lineage was recovered that included Aphelinidae, Azotidae, Eulophidae, Signiphoridae, Tetracampidae and Trichogrammatidae. Eucharitidae and Perilampidae were monophyletic if Eutrichosomatinae (Pteromalidae) was included, and Eupelmidae was monophyletic if Oodera (Pteromalidae: Cleonyminae) was included. Likelihood recovered a clade of Eupelmidae + (Tanaostigmatidae + (Cynipencyrtus + Encyrtidae). Support for other lineages and their impact on the classification of Chalcidoidea is discussed. Several life‐history traits are mapped onto the new phylogeny.  相似文献   
84.
Goodpasture antigen-binding protein-1 (GPBP-1) is an exportable non-conventional Ser/Thr kinase that regulates glomerular basement membrane collagen organization. Here we provide evidence that GPBP-1 accumulates in the cytoplasm of differentiating mouse myoblasts prior to myosin synthesis. Myoblasts deficient in GPBP-1 display defective myofibril formation, whereas myofibrils assemble with enhanced efficiency in those overexpressing GPBP-1. We also show that GPBP-1 targets the previously unidentified GIP130 (GPBP-interacting protein of 130 kDa), which binds to myosin and promotes its myofibrillar assembly. This report reveals that GPBP-1 directs myofibril formation, an observation that expands its reported role in supramolecular organization of structural proteins to the intracellular compartment.  相似文献   
85.
A new combined molecular and morphological phylogeny of the Eulophidae is presented with special reference to the subfamily Entedoninae. We examined 28S D2–D5 and CO1 gene regions with parsimony and partitioned Bayesian analyses, and examined the impact of a small set of historically recognized morphological characters on combined analyses. Eulophidae was strongly supported as monophyletic only after exclusion of the enigmatic genus Trisecodes. The subfamilies Eulophinae, Entiinae (=Euderinae) and Tetrastichinae were consistently supported as monophyletic, but Entedoninae was monophyletic only in combined analyses. Six contiguous bases in the 3e′ subregion of the 28S D2 rDNA contributed to placement of nominal subgenus of Closterocerus outside Entedoninae. In all cases, Euderomphalini was excluded from Entiinae, and we suggest that it be retained in Entedoninae. Opheliminae n. stat. is raised from tribe to subfamily status. Trisecodes is removed from Entedoninae but retained as incertae sedis in Eulophidae until its family placement can be determined new placement . The genera Neochrysocharis stat. rev. and Asecodes stat. rev. are removed from synonymy with Closterocerus because strong molecular differences corroborate their morphological differences. Closterocerus (Achrysocharis) germanicus is transferred to the genus Chrysonotomyia n. comb. based on molecular and morphological characters.  相似文献   
86.
A soil microorganism, designated as P7, was characterized and investigated for its ability to degrade polyurethane (PU). This bacterial isolate was identified as Acinetobacter gerneri on the basis of 16?s rRNA sequencing and biochemical phenotype analysis. The ability of this organism to degrade polyurethane was characterized by the measurement of growth, SEM observation, measurement of electrophoretic mobility and the purification and characterization of a polyurethane degrading enzyme. The purified protein has a molecular weight of approximately 66?kDa as determined by SDS-PAGE. Substrate specificity was examined using p-nitrophenyl substrates with varying carbon lengths. The highest substrate specificity was observed using p-nitrophenyl-propanate with an activity of 37.58?±?0.21?U?mg(-1). Additionally, the enzyme is inhibited by phenylmethylsulfonylfluoride and by ethylenediamine-tetra acetic acid. When grown on Impranil DLN(?) YES medium, a lag phase was noted for the first 3?h which was followed by logarithmic growth for 5?h. For the linear portion of growth between 5 and 9?h, a μ value of 0.413?doublings?h(-1) was calculated. After 9?h of incubation the cell number dramatically decreased resulting in a chalky precipitate. Measurements of electrophoretic mobility indicated the formation of a complex between the PU and A. gerneri P7 cells. A hybrid zeta potential had been generated between the cells and polyurethane. Further evidence for a complex was provided by SEM observation where cells appeared to cluster along the surface of polyurethane particles and along edges of polyurethane films. Occasionally, the cells established an anchor-like structure that connected the cells to polyurethane particles.  相似文献   
87.
88.
The insulin receptor substrate (IRS) proteins are key mediators of insulin and insulinlike growth factor 1 (IGF-1) signaling. Protein tyrosine phosphatase (PTP)-1B dephosphorylates and inactivates both insulin and IGF-1 receptors. IRS2-deficient mice present altered hepatic insulin signaling and β-cell failure and develop type 2–like diabetes. In addition, IRS2 deficiency leads to developmental defects in the nervous system. IGF1 gene mutations cause syndromic sensorineural hearing loss in humans and mice. However, the involvement of IRS2 and PTP1B, two IGF-1 downstream signaling mediators, in hearing onset and loss has not been studied. Our objective was to study the hearing function and cochlear morphology of Irs2-null mice and the impact of PTP1B deficiency. We have studied the auditory brainstem responses and the cochlear morphology of systemic Irs2−/−Ptpn1+/+, Irs2+/+Ptpn1−/−and Irs2−/−Ptpn1−/− mice at different postnatal ages. The results indicated that Irs2−/−Ptpn1+/+ mice present a profound congenital sensorineural deafness before the onset of diabetes and altered cochlear morphology with hypoinnervation of the cochlear ganglion and aberrant stria vascularis, compared with wild-type mice. Simultaneous PTP1B deficiency in Irs2−/−Ptpn1−/− mice delays the onset of deafness. We show for the first time that IRS2 is essential for hearing and that PTP1B inhibition may be useful for treating deafness associated with hyperglycemia and type 2 diabetes.  相似文献   
89.
Galactitol is a significant metabolite of galactose in fasted adults of Anthonomus grandis; this is the first time that galactitol has been found to be a metabolite of galactose in an insect in vivo. Galactitol is not metabolized, and galactose, at best, is poorly metabolized by the boll weevil to trehalose and glycogen. Because sizeable quantities appear in the haemolymph when fed, galactose and galactitol must be readily absorbed through the gut.  相似文献   
90.
We recently observed rapid shallow breathing during recovery from maximal exercise in some normal subjects. We wondered whether this phenomenon is randomly related to level of exercise or is limited to recovery from very high levels of exercise. We monitored ventilation, tidal volume, and respiratory frequency in seven normal subjects during and after exercise. Each subject exercised on several occasions on separate days. At least two of the tests were maximal (i.e., subject terminated). In the other tests exercise was terminated by the experimenter at different fractions of the highest level attained by the subject. There was no systematic difference between breathing pattern during exercise and recovery in tests where final O2 consumption (VO2) was 45-92% of the subjects' highest VO2. By contrast 13 of 19 studies in which final VO2 was 92-100% of highest VO2 were followed by relative rapid shallow breathing. We conclude that rapid shallow breathing during recovery from exercise is a phenomenon that is limited to very high exercise levels. On consideration of the various mechanisms that may be entertained to explain this phenomenon, we believe that development of pulmonary congestion-interstitial edema at very high levels of exercise is the most consistent with our findings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号