首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   12篇
  2022年   2篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   13篇
  2012年   7篇
  2011年   9篇
  2010年   4篇
  2009年   2篇
  2008年   6篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   4篇
  2003年   7篇
  2002年   2篇
  2001年   2篇
  2000年   7篇
  1999年   3篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1992年   5篇
  1991年   5篇
  1990年   1篇
  1989年   5篇
  1988年   1篇
  1987年   5篇
  1986年   3篇
  1985年   9篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
  1941年   1篇
  1925年   1篇
排序方式: 共有166条查询结果,搜索用时 451 毫秒
11.
Insulin receptor substrate (IRS) proteins play important roles in hepatic nutrient homeostasis. Since glucokinase (GK) and glucokinase regulatory protein (GKRP) function as key glucose sensors, we have investigated the expression of GK and GKRP in liver of Irs-2 deficient mice and Irs2(−/−) mice where Irs2 was reintroduced specifically into pancreatic β-cells [RIP-Irs-2/IRS-2(−/−)]. We observed that liver GK activity was significantly lower (p<0.0001) in IRS-2(−/−) mice. However, in RIP-Irs-2/IRS-2(−/−) mice, GK activity was similar to the values observed in wild-type animals. GK activity in hypothalamus was not altered in IRS-2(−/−) mice. GK and GKRP mRNA levels in liver of IRS-2(−/−) were significantly lower, whereas in RIP-Irs-2/IRS-2(−/−) mice, both GK and GKRP mRNAs levels were comparable to wild-type animals. At the protein level, the liver content of GK was reduced in IRS-2(−/−) mice as compared with controls, although GKRP levels were similar between these experimental models. Both GK and GKRP levels were lower in RIP-Irs-2/IRS-2(−/−) mice. These results suggest that IRS-2 signalling is important for maintaining the activity of liver GK. Moreover, the differences between liver and brain GK may be explained by the fact that expression of hepatic, but not brain, GK is controlled by insulin. GK activity was restored by the β-cell compensation in the RIP-Irs-2/IRS-2 mice. Interestingly, GK and GKRP protein expression remained low in RIP-Irs-2/IRS-2(−/−) mice, perhaps reflecting different mRNA half-lives or alterations in the process of translation and post-translational regulation.  相似文献   
12.
13.
The bacterial degradation pathways for the nematocide 1,3-dichloropropene rely on hydrolytic dehalogenation reactions catalyzed by cis- and trans-3-chloroacrylic acid dehalogenases (cis-CaaD and CaaD, respectively). X-ray crystal structures of native cis-CaaD and cis-CaaD inactivated by (R)-oxirane-2-carboxylate were elucidated. They locate four known catalytic residues (Pro-1, Arg-70, Arg-73, and Glu-114) and two previously unknown, potential catalytic residues (His-28 and Tyr-103'). The Y103F and H28A mutants of these latter two residues displayed reductions in cis-CaaD activity confirming their importance in catalysis. The structure of the inactivated enzyme shows covalent modification of the Pro-1 nitrogen atom by (R)-2-hydroxypropanoate at the C3 position. The interactions in the complex implicate Arg-70 or a water molecule bound to Arg-70 as the proton donor for the epoxide ring-opening reaction and Arg-73 and His-28 as primary binding contacts for the carboxylate group. This proposed binding mode places the (R)-enantiomer, but not the (S)-enantiomer, in position to covalently modify Pro-1. The absence of His-28 (or an equivalent) in CaaD could account for the fact that CaaD is not inactivated by either enantiomer. The cis-CaaD structures support a mechanism in which Glu-114 and Tyr-103' activate a water molecule for addition to C3 of the substrate and His-28, Arg-70, and Arg-73 interact with the C1 carboxylate group to assist in substrate binding and polarization. Pro-1 provides a proton at C2. The involvement of His-28 and Tyr-103' distinguishes the cis-CaaD mechanism from the otherwise parallel CaaD mechanism. The two mechanisms probably evolved independently as the result of an early gene duplication of a common ancestor.  相似文献   
14.
15.
Peanut allergy (PNA) is the major cause of fatal and near-fatal anaphylactic reactions to foods. Traditional immunotherapy using peanut (PN) protein is not an option for PNA therapy because of the high incidence of adverse reactions. We investigated the effects of s.c. injections of engineered (modified) recombinant PN proteins and heat-killed Listeria monocytogenes (HKLM) as an adjuvant on anaphylactic reactions in a mouse model of PN allergy. PN-allergic C3H/HeJ mice were treated s.c. with a mixture of the three major PN allergens and HKLM (modified (m)Ara h 1-3 plus HKLM). The effects on anaphylactic reactions following PN challenge and the association with Ab levels and cytokine profiles were determined. Although all mice in the sham-treated groups exhibited anaphylactic symptoms with a median symptom score of 3, only 31% of mice in the mAra h 1-3 plus HKLM group developed mild anaphylaxis, with a low median symptom score of 0.5. Alterations in core body temperature, bronchial constriction, plasma histamine, and PN-specific IgE levels were all significantly reduced. This protective effect was markedly more potent than in the mAra h 1-3 protein alone-treated group. HKLM alone did not have any protective effect. Reduced IL-5 and IL-13, and increased IFN-gamma levels were observed only in splenocytes cultures from mAra h 1-3 plus HKLM-treated mice. These results show that immunotherapy with modified PN proteins and HKLM is effective for treating PN allergy in this model, and may be a potential approach for treating PNA.  相似文献   
16.
In the past decade, there has been an increase in allergic reactions to peanut proteins, sometimes resulting in fatal anaphylaxis. The development of improved methods for diagnosis and treatment of peanut allergies requires a better understanding of the structure of the allergens. Ara h 1, a major peanut allergen belonging to the vicilin family of seed storage proteins, is recognized by serum IgE from >90% of peanut-allergic patients. In this communication, Ara h 1 was shown to form a highly stable homotrimer. Hydrophobic interactions were determined to be the main molecular force holding monomers together. A molecular model of the Ara h 1 trimer was constructed to view the stabilizing hydrophobic residues in the three dimensional structure. Hydrophobic amino acids that contribute to trimer formation are at the distal ends of the three dimensional structure where monomer-monomer contacts occur. Coincidentally, the majority of the IgE-binding epitopes are also located in this region, suggesting that they may be protected from digestion by the monomer-monomer contacts. On incubation of Ara h 1 with digestive enzymes, various protease-resistant fragments containing IgE-binding sites were identified. The highly stable nature of the Ara h 1 trimer, the presence of digestion resistant fragments, and the strategic location of the IgE-binding epitopes indicate that the quaternary structure of a protein may play a significant role in overall allergenicity.  相似文献   
17.
18.
19.
Liposomes are promising vehicles to deliver diagnostic and therapeutic agents to cells in vivo. After uptake into cells by endocytosis, liposomes are degraded in the endolysosomal system. Consequently, the encapsulated cargo molecules frequently remain sequestered in endosomal compartments; this limits their usefulness in many applications (e.g. gene delivery). To overcome this, various fusogenic peptides have been developed to facilitate delivery of liposomally-encapsulated molecules into the cytosol. One such peptide is the pH-sensitive influenza-derived peptide INF7. Liposomal delivery of imaging agents is an attractive approach for enabling cell imaging and cell tracking in vivo, but can be hampered by inadequate intracellular accumulation and retention of probes caused by exocytosis (and possible degradation) of endosome-entrapped probes. Such signal loss could be minimized by facilitating escape of probe molecules from endolysosomal compartments into the cytosol. We investigated the ability of co-encapsulated INF7 to release liposomally-delivered rhodamine fluorophores into the cytosol after endosomal acidification/maturation. We co-encapsulated INF7 and fluorescent rhodamine derivatives having vastly different transport properties to show that after endocytosis by CV1 cells, the INF7 peptide is activated by acidic endosomal pH and facilitates efficient release of the fluorescent tracers into the cytosol. Furthermore, we show that INF7-facilitated escape from endosomes markedly enhanced retention of tracers that cannot be actively extruded from the cytosol. Minimizing loss of intracellular probes improves cellular imaging by increasing the signal-to-noise ratio of images and lengthening the time window that imaging can be performed. In particular, this will enhance in vivo electron paramagnetic resonance imaging, an emergent magnetic resonance imaging modality requires exogenous paramagnetic imaging agents and is highly promising for cellular and molecular imaging.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号