首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1087篇
  免费   94篇
  1181篇
  2022年   9篇
  2021年   12篇
  2020年   10篇
  2019年   9篇
  2018年   8篇
  2017年   10篇
  2016年   23篇
  2015年   31篇
  2014年   48篇
  2013年   50篇
  2012年   72篇
  2011年   90篇
  2010年   56篇
  2009年   64篇
  2008年   78篇
  2007年   68篇
  2006年   72篇
  2005年   72篇
  2004年   63篇
  2003年   71篇
  2002年   68篇
  2001年   18篇
  2000年   15篇
  1999年   11篇
  1998年   24篇
  1997年   12篇
  1996年   11篇
  1995年   8篇
  1994年   15篇
  1993年   10篇
  1992年   7篇
  1991年   4篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1973年   3篇
  1972年   2篇
  1965年   2篇
  1961年   2篇
排序方式: 共有1181条查询结果,搜索用时 15 毫秒
91.
DOPA decarboxylase (DDC) is responsible for the synthesis of the key neurotransmitters dopamine and serotonin via decarboxylation of L-3,4-dihydroxyphenylalanine (L-DOPA) and L-5-hydroxytryptophan, respectively. DDC has been implicated in a number of clinic disorders, including Parkinson's disease and hypertension. Peripheral inhibitors of DDC are currently used to treat these diseases. We present the crystal structures of ligand-free DDC and its complex with the anti-Parkinson drug carbiDOPA. The inhibitor is bound to the enzyme by forming a hydrazone linkage with the cofactor, and its catechol ring is deeply buried in the active site cleft. The structures provide the molecular basis for the development of new inhibitors of DDC with better pharmacological characteristics.  相似文献   
92.

Objectives

To search for imaging characteristics distinguishing patients with successful from those with futile microbiological pathogen detection by CT-guided biopsy in suspected spondylodiscitis.

Methods

34 consecutive patients with suspected spondylodiscitis underwent CT-guided biopsy for pathogen detection. MR-images were assessed for inflammatory infiltration of disks, adjacent vertebrae, epidural and paravertebral space. CT-images were reviewed for arrosion of adjacent end plates and reduced disk height. Biopsy samples were sent for microbiological examination in 34/34 patients, and for additional histological analysis in 28/34 patients.

Results

Paravertebral infiltration was present in all 10/10 patients with positive microbiology and occurred in only 12/24 patients with negative microbiology, resulting in a sensitivity of 100% and a specificity of 50% for pathogen detection. Despite its limited sensitivities, epidural infiltration and paravertebral abscesses showed considerably higher specificities of 83.3% and 90.9%, respectively. Paravertebral infiltration was more extensive in patients with positive as compared to negative microbiology (p = 0.002). Even though sensitivities for pathogen detection were also high in case of vertebral and disk infiltration, or end plate arrosion, specificities remained below 10%.

Conclusions

Inflammatory infiltration of the paravertebral space indicated successful pathogen detection by CT-guided biopsy. Specificity was increased by the additional occurrence of epidural infiltration or paravertebral abscesses.  相似文献   
93.
The physiological role of GLP-1 in human: incretin, ileal brake or more?   总被引:4,自引:0,他引:4  
The proglucagon-derived peptide glucagon-like peptide-1 (GLP-1) is an intestinal signal peptide postprandially released from the L cells of the lower gut. Exogenously administered the synthetic hormone exerts a glucose-dependent insulinotropic effect at the pancreatic beta-cells and lowers plasma glucagon by an inhibitory effect against the alpha-cells. It delays gastric emptying by relaxation of the gastric fundus, inhibition of antral contractility, and stimulation of both the tonic and phasic motility of the pyloric sphincter. Enhancement of insulin, suppression of glucagon, and inhibition of gastric emptying are the main determinants controlling glucose homeostasis with GLP-1. Human studies employing the specific GLP-1 receptor antagonist exendin(9-39) show that endogenously released GLP-1 likewise controls fasting plasma glucagon, stimulates insulin, and influences all the motoric mechanisms known to control gastric emptying. Therefore, GLP-1 is discussed as an incretin hormone and as an enterogastrone in man. Synthetic GLP-1 also suppresses gastric acid and pancreatic enzyme secretion. The inhibitory effects on upper gastrointestinal functions are at least partly mediated by vagal-cholinergic inhibition and may involve interactions with vagal afferent pathways and/or circumventricular regions within the CNS. GLP-1 is a candidate humoral mediator of the 'ileal brake' exerting inhibition of upper gastrointestinal function preventing malabsorption and postprandial metabolic disturbances. As human studies indicate a central action of GLP-1 in reduction of food intake, it is uncertain if this is a consequence of induction of satiety or of transduction of visceral aversive stress signals.  相似文献   
94.
Major depressive disorder (MDD) is a severe disease of unknown pathogenesis that will affect ∼10% of people during their lifetime. Therapy for MDD requires prolonged treatment and often fails, predicating a need for novel treatment strategies. Here, we report increased ceramide levels in the blood plasma of MDD patients and in murine stress-induced models of MDD. These blood plasma ceramide levels correlated with the severity of MDD in human patients and were independent of age, sex, or body mass index. In addition, intravenous injection of anti-ceramide antibodies or neutral ceramidase rapidly abrogated stress-induced MDD, and intravenous injection of blood plasma from mice with MDD induced depression-like behavior in untreated mice, which was abrogated by ex vivo preincubation of the plasma with anti-ceramide antibodies or ceramidase. Mechanistically, we demonstrate that ceramide accumulated in endothelial cells of the hippocampus of stressed mice, evidenced by the quantitative measurement of ceramide in purified hippocampus endothelial cells. We found ceramide inhibited the activity of phospholipase D (PLD) in endothelial cells in vitro and in the hippocampus in vivo and thereby decreased phosphatidic acid in the hippocampus. Finally, we show intravenous injection of PLD or phosphatidic acid abrogated MDD, indicating the significance of this pathway in MDD pathogenesis. Our data indicate that ceramide controls PLD activity and phosphatidic acid formation in hippocampal endothelial cells and thereby mediates MDD. We propose that neutralization of plasma ceramide could represent a rapid-acting targeted treatment for MDD.  相似文献   
95.
Kernytsky A  Rost B 《Proteins》2009,75(1):75-88
Many important characteristics of proteins such as biochemical activity and subcellular localization present a challenge to machine-learning methods: it is often difficult to encode the appropriate input features at the residue level for the purpose of making a prediction for the entire protein. The problem is usually that the biophysics of the connection between a machine-learning method's input (sequence feature) and its output (observed phenomenon to be predicted) remains unknown; in other words, we may only know that a certain protein is an enzyme (output) without knowing which region may contain the active site residues (input). The goal then becomes to dissect a protein into a vast set of sequence-derived features and to correlate those features with the desired output. We introduce a framework that begins with a set of global sequence features and then vastly expands the feature space by generically encoding the coexistence of residue-based features. It is this combination of individual features, that is the step from the fractions of serine and buried (input space 20 + 2) to the fraction of buried serine (input space 20 * 2) that implicitly shifts the search space from global feature inputs to features that can capture very local evidence such as a the individual residues of a catalytic triad. The vast feature space created is explored by a genetic algorithm (GA) paired with neural networks and support vector machines. We find that the GA is critical for selecting combinations of features that are neither too general resulting in poor performance, nor too specific, leading to overtraining. The final framework manages to effectively sample a feature space that is far too large for exhaustive enumeration. We demonstrate the power of the concept by applying it to prediction of protein enzymatic activity.  相似文献   
96.
97.
Rat bone morphogenetic protein-4 (rBMP-4) cDNA was cloned from rat osteoblasts by RT-PCR and expressed in E. coli. Monomeric, dimeric and polymeric forms of recombinant rat BMP-4 (rrBMP-4) were obtained from inclusion bodies after solubilization with urea. The dimer was separated from the remaining polymer and host cell contaminants using size exclusion chromatography. Furthermore, purified rrBMP-4 was stabilized at low urea concentration (40 mm) and at pH 8.5 through the addition of bovine serum albumin. Both, rrBMP-4 dimer and polymer were biologically active as tested by the induction of alkaline phosphatase activity in MC3T3-E1 cells.  相似文献   
98.
The fluorescent dye chlorotetracycline was used to study the relationship between the light-induced decrease in cytosolic free calcium concentration, [Ca2+]c, and its effect on ion transport at the plasma membrane in the giant cells of Chara corallina Klein ex Willd. A kinetic analysis of the simultaneously measured light-induced changes in membrane potential and in [Ca2+]c led to the same time constant of about 40 s. The reversal potential of the light effect on membrane potential was in agreement with the dominant role of a K+ channel in the plasma membrane. Thus, the experiments reported here provide evidence for the following light-driven signal transduction chain from the chloroplasts to K+ transport of the plasma membrane: (i) light causes an uptake of Ca2+ into the chloroplasts, (ii) this causes a decrease in cytosolic [Ca2+]c, (iii) this leads to a decrease in the activity of a K+ channel. The results also initiated a re-analysis of previously published data of the light effect on the velocity of cytosolic streaming and supported the hypothesis that Ca2+ fluxes coming out of the chloroplasts upon darkening cause a Ca2+-induced phosphorylation of myosin, which slows down cytoplasmic streaming. Received: 3 May 1997 / Accepted: 19 May 1998  相似文献   
99.

Background

Antibodies against retinal and optic nerve antigens are detectable in glaucoma patients. Recent studies using a model of experimental autoimmune glaucoma demonstrated that immunization with certain ocular antigens causes an immun-mediated retinal ganglion cell loss in rats.

Methodology/Principal Findings

Rats immunized with a retinal ganglion cell layer homogenate (RGA) had a reduced retinal ganglion cell density on retinal flatmounts (p = 0.007) and a lower number of Brn3+retinal ganglion cells (p = 0.0001) after six weeks. The autoreactive antibody development against retina and optic nerve was examined throughout the study. The levels of autoreactive antibodies continuously increased up to 6 weeks (retina: p = 0.004; optic nerve: p = 0.000003). Additionally, antibody deposits were detected in the retina (p = 0.02). After 6 weeks a reactive gliosis (GFAP density: RGA: 174.7±41.9; CO: 137.6±36.8, p = 0.0006; %GFAP+ area: RGA: 8.5±3.4; CO: 5.9±3.6, p = 0.006) as well as elevated level of Iba1+ microglia cells (p = 0.003) was observed in retinas of RGA animals.

Conclusions/Significance

Our findings suggest that these antibodies play a substantial role in mechanisms leading to retinal ganglion cell death. This seems to lead to glia cell activation as well as the invasion of microglia, which might be associated with debris clearance.  相似文献   
100.

Background

Diabetes mellitus is a group of metabolic diseases with increased blood glucose concentration as the main symptom. This can be caused by a relative or a total lack of insulin which is produced by the β‐cells in the pancreatic islets of Langerhans. Recent experimental results indicate the relevance of the β‐cell cycle for the development of diabetes mellitus.

Methods

This paper introduces a mathematical model that connects the dynamics of glucose and insulin concentration with the β‐cell cycle. The interplay of glucose, insulin, and β‐cell cycle is described with a system of ordinary differential equations. The model and its development will be presented as well as its mathematical analysis. The latter investigates the steady states of the model and their stability.

Results

Our model shows the connection of glucose and insulin concentrations to the β‐cell cycle. In this way the important role of glucose as regulator of the cell cycle and the capability of the β‐cell mass to adapt to metabolic demands can be presented. Simulations of the model correspond to the qualitative behavior of the glucose‐insulin regulatory system showed in biological experiments.

Conclusions

This work focusses on modeling the physiological situation of the glucose‐insulin regulatory system with a detailed consideration of the β‐cell cycle. Furthermore, the presented model allows the simulation of pathological scenarios. Modification of different parameters results in simulation of either type 1 or type 2 diabetes.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号