首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1071篇
  免费   93篇
  1164篇
  2022年   7篇
  2021年   8篇
  2020年   10篇
  2019年   10篇
  2018年   9篇
  2017年   10篇
  2016年   24篇
  2015年   32篇
  2014年   51篇
  2013年   53篇
  2012年   72篇
  2011年   93篇
  2010年   56篇
  2009年   61篇
  2008年   77篇
  2007年   66篇
  2006年   72篇
  2005年   69篇
  2004年   64篇
  2003年   68篇
  2002年   70篇
  2001年   21篇
  2000年   12篇
  1999年   10篇
  1998年   19篇
  1997年   12篇
  1996年   8篇
  1995年   9篇
  1994年   13篇
  1993年   10篇
  1992年   7篇
  1991年   4篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1978年   2篇
  1977年   2篇
  1973年   3篇
  1972年   2篇
  1965年   2篇
  1961年   2篇
  1960年   1篇
  1957年   1篇
  1955年   1篇
排序方式: 共有1164条查询结果,搜索用时 15 毫秒
121.
The known genomic islands of Pseudomonas aeruginosa clone C strains are integrated into tRNA(Lys) (pKLC102) or tRNA(Gly) (PAGI-2 and PAGI-3) genes and differ from their core genomes by distinctive tetranucleotide usage patterns. pKLC102 and the related island PAPI-1 from P. aeruginosa PA14 were spontaneously mobilized from their host chromosomes at frequencies of 10% and 0.3%, making pKLC102 the most mobile genomic island known with a copy number of 30 episomal circular pKLC102 molecules per cell. The incidence of islands of the pKLC102/PAGI-2 type was investigated in 71 unrelated P. aeruginosa strains from diverse habitats and geographic origins. pKLC102- and PAGI-2-like islands were identified in 50 and 31 strains, respectively, and 15 and 10 subtypes were differentiated by hybridization on pKLC102 and PAGI-2 macroarrays. The diversity of PAGI-2-type islands was mainly caused by one large block of strain-specific genes, whereas the diversity of pKLC102-type islands was primarily generated by subtype-specific combination of gene cassettes. Chromosomal loss of PAGI-2 could be documented in sequential P. aeruginosa isolates from individuals with cystic fibrosis. PAGI-2 was present in most tested Cupriavidus metallidurans and Cupriavidus campinensis isolates from polluted environments, demonstrating the spread of PAGI-2 across habitats and species barriers. The pKLC102/PAGI-2 family is prevalent in numerous beta- and gammaproteobacteria and is characterized by high asymmetry of the cDNA strands. This evolutionarily ancient family of genomic islands retained its oligonucleotide signature during horizontal spread within and among taxa.  相似文献   
122.

Background/Methods

The molecular epidemiology of the chronic airway infections with Pseudomonas aeruginosa in individuals with cystic fibrosis (CF) was investigated by cross-sectional analysis of bacterial isolates from 51 CF centers and by longitudinal analysis of serial isolates which had been collected at the CF centers Hanover and Copenhagen since the onset of airway colonization over 30 years.

Results

Genotyping revealed that the P. aeruginosa population in CF is dominated by a few ubiquitous clones. The five most common clones retrieved from the CF host also belonged to the twenty most frequent clones in the environment and in other human disease habitats. Turnover of clones in CF airways was rare. At the Hanover clinic more than half of the patient cohort was still harbouring the initially acquired clone after twenty years of airway colonization. At the Copenhagen clinic, however, two rare clones replaced the initially acquired individual clones in all but one patient.

Conclusion

The divergent epidemiology at the two sites is explained by their differential management of hygiene and antipseudomonal chemotherapy. Hygienic measures to prohibit patient-to-patient transmission and the modalities of antipseudomonal chemotherapy modify the epidemiology of the chronic P. aeruginosa infections in CF.  相似文献   
123.
Doping of organic bulk heterojunction solar cells has the potential to improve their power conversion efficiency (PCE). Deconvoluting the effect of doping on charge transport, recombination, and energetic disorder remains challenging. It is demonstrated that molecular doping has two competing effects: on one hand, dopant ions create additional traps while on the other hand free dopant‐induced charges fill deep states possibly leading to V OC and mobility increases. It is shown that molar dopant concentrations as low as a few parts per million can improve the PCE of organic bulk heterojunctions. Higher concentrations degrade the performance of the cells. In doped cells where PCE is observed to increase, such improvement cannot be attributed to better charge transport. Instead, the V OC increase in unannealed P3HT:PCBM cells upon doping is indeed due to trap filling, while for annealed P3HT:PCBM cells the change in V OC is related to morphology changes and dopant segregation. In PCDTBT:PC70BM cells, the enhanced PCE upon doping is explained by changes in the thickness of the active layer. This study highlights the complexity of bulk doping in organic solar cells due to the generally low doping efficiency and the constraint on doping concentrations to avoid carrier recombination and adverse morphology changes.  相似文献   
124.
T cell-specific adapter protein (TSAd), encoded by the SH2D2A gene, interacts with Lck through its C terminus and thus modulates Lck activity. Here we mapped Lck phosphorylation and interaction sites on TSAd and evaluated their functional importance. The three C-terminal TSAd tyrosines Tyr(280), Tyr(290), and Tyr(305) were phosphorylated by Lck and functioned as docking sites for the Lck Src homology 2 (SH2) domain. Binding affinities of the TSAd Tyr(P)(280) and Tyr(P)(290) phosphopeptides to the isolated Lck SH2 domain were similar to that observed for the Lck Tyr(P)(505) phosphopeptide, whereas the TSAd Tyr(P)(305) peptide displayed a 10-fold higher affinity. The proline-rich Lck SH3-binding site on TSAd as well as the Lck SH2 domain were required for efficient tyrosine phosphorylation of TSAd by Lck. Interaction sites on TSAd for both Lck SH2 and Lck SH3 were necessary for TSAd-mediated modulation of proximal TCR signaling events. We found that 20-30% of TSAd molecules are phosphorylated in activated T cells and that the proportion of TSAd to Lck molecules in such cells is approximately 1:1. Therefore, in activated T cells, a considerable number of Lck molecules may potentially be engaged by TSAd. In conclusion, Lck binds to TSAd prolines and phosphorylates and interacts with the three C-terminal TSAd tyrosines. We propose that through multivalent interactions with Lck, TSAd diverts Lck from phosphorylating other substrates, thus modulating its functional activity through substrate competition.  相似文献   
125.
Coiled coils: a highly versatile protein folding motif   总被引:31,自引:0,他引:31  
The alpha-helical coiled coil is one of the principal subunit oligomerization motifs in proteins. Its most characteristic feature is a heptad repeat pattern of primarily apolar residues that constitute the oligomer interface. Despite its simplicity, it is a highly versatile folding motif: coiled-coil-containing proteins exhibit a broad range of different functions related to the specific 'design' of their coiled-coil domains. The architecture of a particular coiled-coil domain determines its oligomerization state, rigidity and ability to function as a molecular recognition system. Much progress has been made towards understanding the factors that determine coiled-coil formation and stability. Here we discuss this highly versatile protein folding and oligomerization motif with regard to its structural architecture and how this is related to its biological functions.  相似文献   
126.
We here describe that soluble HLA-DQ2 (sDQ2) molecules, when expressed in Drosophila melanogaster S2 insect cells without a covalently tethered peptide, associate tightly with the D. melanogaster calcium binding protein DCB-45. The interaction between the proteins is stable in S2 cell culture and during affinity purification, which is done at high salt concentrations and pH 11.5. After affinity purification, the sDQ2/DCB-45 complex exists in substantial quantities next to a small amount of free heterodimeric sDQ2 and large amounts of aggregated sDQ2 free of DCB-45. Motivated by the stable complex formation and our interest in the development of reagents which inhibit HLA-DQ2 peptide binding, we have further characterized the sDQ2/DCB-45 interaction. Several lines of evidence indicate that an N-terminal fragment of DCB-45 is involved in the interaction with the peptide binding groove of sDQ2. Further mapping of this fragment of 54 residues identified a pentadecapeptide with high affinity for sDQ2 which may serve as a lead compound for the design of HLA-DQ2 blockers.  相似文献   
127.
Abstract The genome of Pseudomonas aeruginosa was analysed by digestion with rare-cutting restriction endonucleases and subsequent field inversion gel electrophoresis (FIGE). P. aeruginosa strain PAO and the 17 IATS strains were investigated. Each strain displayed a unique pattern of restriction fragments. Digestion with Dra I and Ssp I yielded, respectively 7–11 and 2–5 fragments of more than 130 kb in size, indicating the non-random occurrence of AT-rich sequences in the P. aeruginosa genome. The genome size of P. aeruginosa PAO was estimated to be (2.2 ± 0.3) × 106 bp. The applications of DNA fingerprinting for gene cloning, construction of a physical chromosome map, and epidemiological studies, are discussed.  相似文献   
128.
Hereditary neuropathies comprise a wide variety of chronic diseases associated to more than 80 genes identified to date. We herein examined 612 index patients with either a Charcot‐Marie‐Tooth phenotype, hereditary sensory neuropathy, familial amyloid neuropathy, or small fiber neuropathy using a customized multigene panel based on the next generation sequencing technique. In 121 cases (19.8%), we identified at least one putative pathogenic mutation. Of these, 54.4% showed an autosomal dominant, 33.9% an autosomal recessive, and 11.6% an X‐linked inheritance. The most frequently affected genes were PMP22 (16.4%), GJB1 (10.7%), MPZ, and SH3TC2 (both 9.9%), and MFN2 (8.3%). We further detected likely or known pathogenic variants in HINT1, HSPB1, NEFL, PRX, IGHMBP2, NDRG1, TTR, EGR2, FIG4, GDAP1, LMNA, LRSAM1, POLG, TRPV4, AARS, BIC2, DHTKD1, FGD4, HK1, INF2, KIF5A, PDK3, REEP1, SBF1, SBF2, SCN9A, and SPTLC2 with a declining frequency. Thirty‐four novel variants were considered likely pathogenic not having previously been described in association with any disorder in the literature. In one patient, two homozygous mutations in HK1 were detected in the multigene panel, but not by whole exome sequencing. A novel missense mutation in KIF5A was considered pathogenic because of the highly compatible phenotype. In one patient, the plasma sphingolipid profile could functionally prove the pathogenicity of a mutation in SPTLC2. One pathogenic mutation in MPZ was identified after being previously missed by Sanger sequencing. We conclude that panel based next generation sequencing is a useful, time‐ and cost‐effective approach to assist clinicians in identifying the correct diagnosis and enable causative treatment considerations.

  相似文献   
129.
T(H)17 lymphocytes appear to be essential in the pathogenesis of numerous inflammatory diseases. We demonstrate here the expression of IL-17 and IL-22 receptors on blood-brain barrier endothelial cells (BBB-ECs) in multiple sclerosis lesions, and show that IL-17 and IL-22 disrupt BBB tight junctions in vitro and in vivo. Furthermore, T(H)17 lymphocytes transmigrate efficiently across BBB-ECs, highly express granzyme B, kill human neurons and promote central nervous system inflammation through CD4+ lymphocyte recruitment.  相似文献   
130.
Liu W  Crocker E  Zhang W  Elliott JI  Luy B  Li H  Aimoto S  Smith SO 《Biochemistry》2005,44(9):3591-3597
Amyloid fibrils associated with diseases such as Alzheimer's are often derived from the transmembrane helices of membrane proteins. It is known that the fibrils have a cross-beta-sheet structure where main chain hydrogen bonding occurs between beta-strands in the direction of the fibril axis. However, the structural basis for how the membrane-spanning helix is converted into a beta-sheet or how protofibrils associate into fibrils is not known. Here, we use a model peptide corresponding to a portion of the single transmembrane helix of glycophorin A to investigate the structural role of glycine in amyloid-like fibrils formed from transmembrane helices. Glycophorin A contains a GxxxG motif that is found in many transmembrane sequences including that of the amyloid precursor protein and prion protein. We propose that glycine, which mediates helix interactions in membrane proteins, also provides key packing motifs when it occurs in beta-sheets. We show that glycines in the glycophorin A transmembrane helix promote extended beta-strand formation when the helix partitions into aqueous environments and stabilize the packing of beta-sheets in the formation of amyloid-like fibrils. We demonstrate that fibrillization can be disrupted with a new class of inhibitors that target the molecular grooves created by glycine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号