首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1121篇
  免费   70篇
  国内免费   14篇
  1205篇
  2023年   23篇
  2022年   14篇
  2021年   21篇
  2020年   29篇
  2019年   24篇
  2018年   42篇
  2017年   45篇
  2016年   39篇
  2015年   44篇
  2014年   67篇
  2013年   98篇
  2012年   64篇
  2011年   45篇
  2010年   57篇
  2009年   44篇
  2008年   37篇
  2007年   33篇
  2006年   48篇
  2005年   25篇
  2004年   34篇
  2003年   23篇
  2002年   28篇
  2001年   24篇
  2000年   22篇
  1999年   14篇
  1998年   15篇
  1997年   13篇
  1996年   13篇
  1995年   15篇
  1994年   11篇
  1993年   6篇
  1992年   16篇
  1991年   7篇
  1990年   11篇
  1989年   11篇
  1988年   8篇
  1987年   10篇
  1986年   7篇
  1985年   8篇
  1984年   6篇
  1983年   7篇
  1977年   5篇
  1976年   7篇
  1975年   9篇
  1974年   10篇
  1973年   9篇
  1972年   5篇
  1971年   9篇
  1967年   5篇
  1966年   5篇
排序方式: 共有1205条查询结果,搜索用时 15 毫秒
121.

Background

Extended physical inactivity causes disuse osteoporosis in humans. In contrast, brown bears (Ursus arctos) are highly immobilised for half of the year during hibernation without signs of bone loss and therefore may serve as a model for prevention of osteoporosis.

Aim

To study 25-hydroxy-vitamin D (25OHD) levels and bone turnover markers in brown bears during the hibernating state in winter and during the active state in summer. We measured vitamin D subtypes (D2 and D3), calcitropic hormones (parathyroid hormone [PTH], 1,25-dihydroxy-vitamin D [1,25(OH)2D]) and bone turnover parameters (osteocalcin, ICTP, CTX-I), PTH, serum calcium and PIIINP.

Material and Methods

We drew blood from seven immobilised wild brown bears during hibernation in February and in the same bears while active in June.

Results

Serum 25-hydroxy-cholecalciferol (25OHD3) was significantly higher in the summer than in the winter (22.8±4.6 vs. 8.8±2.1 nmol/l, two tailed p - 2p = 0.02), whereas 25-hydroxy-ergocalciferol (25OHD2) was higher in winter (54.2±8.3 vs. 18.7±1.7 nmol/l, 2p<0.01). Total serum calcium and PTH levels did not differ between winter and summer. Activated 1,25(OH)2D demonstrated a statistically insignificant trend towards higher summer levels. Osteocalcin levels were higher in summer than winter, whereas other markers of bone turnover (ICTP and CTX-I) were unchanged. Serum PIIINP, which is a marker of connective tissue and to some degree muscle turnover, was significantly higher during summer than during winter.

Conclusions

Dramatic changes were documented in the vitamin D3/D2 ratio and in markers of bone and connective tissue turnover in brown bears between hibernation and the active state. Because hibernating brown bears do not develop disuse osteoporosis, despite extensive physical inactivity we suggest that they may serve as a model for the prevention of this disease.  相似文献   
122.
Basil (Ocimum basilicum L.) seedlings were cultured on liquid medium in controlled conditions. Two varieties differing in leaf size were compared. When plants were 30?days old, the medium was supplemented with 50?mM NaCl. After 15?days of treatment, root, stem and leaf biomass, leaf number, and leaf surface area were measured. Ion accumulation was determined in roots, stems, and leaves. Photosynthetic parameters (CO2 fixation rate, internal CO2 concentration, stomatal conductance) as well as transpiration rate were determined on separate leaves. Electrolyte leakage and malondialdehyde content were used to estimate damage to membranes and lipid peroxidation, respectively. Several antioxidant enzymatic activities were used as proxies of oxidative stress. High Na+ concentration was reached in leaf tissues. Salt restricted whole plant biomass deposition rate by diminishing leaf number and leaf expansion, as well as photosynthetic activity were estimated from whole plant biomass production per unit leaf surface area. Diminished stomatal conductance restricted CO2 fixation rate, and decrease in chlorophyll content presumably limited photosynthetic activity. Lipid peroxidation revealed damages to membranes. The magnitude of these responses differed between the two varieties, indicating that an intraspecific variability in salt response exists in basil.  相似文献   
123.
The anti-tumour drug methotrexate (MTX) induces intestinal mucosa injury resulting in malabsorption and diarrhoea. The purpose of this study was to investigate whether exogenous melatonin could protect the gut from MTX-induced damage in rats. A single dose of MTX (20 mg kg(-1), i.p.) was followed by i.p. saline or melatonin injections (10 mg kg(-1), MTX + Mel) for the next 5 days. On the fifth day, intestinal transit was assessed using charcoal propagation. Rats were decapitated and small intestinal segments were fixed for light (LM) and scanning electron microscope (SEM) examinations. Other intestinal segments were stored to measure glutathione (GSH) and malondialdehyde (MDA) levels, myeloperoxidase (MPO) and ATPase activity. MTX led to loss of more than 10% of the initial body weight (p < 0.01). Conversely, weight loss was markedly less in the melatonin-treated MTX group (p < 0.05). Bowel motility was increased in MTX-treated rats, while the transit index in the MTX-Mel group was not different from the control group. MTX caused decreases in GSH levels and ATPase activity, with increases in MDA levels and MPO activity. These changes were reversed in MTX-Mel-treated rats (p < 0.05-p < 0.001). LM and SEM in the MTX group revealed desquamation of surface epithelium and glandular degeneration, while the epithelium was slightly damaged in the MTX-Mel group. In conclusion, the present study demonstrates that melatonin is capable of reversing MTX-induced intestinal dysfunctions, indicating that it may be beneficial in ameliorating the symptoms of chemotherapy-induced enteritis.  相似文献   
124.
Continuous and intermittent 50 Hz, 1.5 mT magnetic field with the exposure period of 4 h/day for 4 days was used to investigate its possible effect on adult guinea pigs. Tissues and plasma specimens were assessed by biochemical parameters. Malondialdehyde (MDA), glutathione (GSH), nitric oxide (NO) levels and myeloperoxidase activity (MPO) were examined in plasma, liver and brain tissues. All parameters were determined by spectrophotometer. While intermittent magnetic field was effective on plasma lipid peroxidation, continuous magnetic field was found to be effective on plasma MPO activity and NO levels. Augmentation of lipid peroxidation was also observed in liver tissue both intermittent and continuous magnetic field exposures. These results indicate that both the intermittent and continuous magnetic field exposures affect various tissues in a distinct manner because of having different tissue antioxidant status and responses.  相似文献   
125.
Lichens, which are symbioses of a fungus and one or two photoautotrophs, frequently tolerate extreme environmental conditions. This makes them valuable model systems in astrobiological research to fathom the limits and limitations of eukaryotic symbioses. Various studies demonstrated the high resistance of selected extremotolerant lichens towards extreme, non-terrestrial abiotic factors including space exposure, hypervelocity impact simulations as well as space and Martian parameter simulations. This study focusses on the diverse set of secondary lichen compounds (SLCs) that act as photo- and UVR-protective substances. Five lichen species used in present-day astrobiological research were compared: Buellia frigida, Circinaria gyrosa, Rhizocarpon geographicum, Xanthoria elegans, and Pleopsidium chlorophanum. Detailed investigation of secondary substances including photosynthetic pigments was performed for whole lichen thalli but also for axenically cultivated mycobionts and photobionts by methods of UV/VIS-spectrophotometry and two types of high performance liquid chromatography (HPLC). Additionally, a set of chemical tests is presented to confirm the formation of melanic compounds in lichen and mycobiont samples. All investigated lichens reveal various sets of SLCs, except C. gyrosa where only melanin was putatively identified. Such studies will help to assess the contribution of SLCs on lichen extremotolerance, to understand the adaptation of lichens to prevalent abiotic stressors of the respective habitat, and to form a basis for interpreting recent and future astrobiological experiments. As most of the identified SLCs demonstrated a high capacity in absorbing UVR, they may also explain the high resistance of lichens towards non-terrestrial UVR.  相似文献   
126.
The question addressed is whether cholesterol intake reduces the hepatic copper content in rats. For this purpose we have compared the hepatic copper content of two selected rat inbred strains after feeding the animals a control or a high fat, high cholesterol diet. One strain was dietary cholesterol resistant (SHR/OlaIpcv), whereas the other strain was susceptible to dietary cholesterol (BN-Lx/Cub). Dietary cholesterol-susceptible rats have a lower baseline hepatic copper content when compared with their resistant counterparts. The consumption of a hypercholesterolemic diet decreased the liver copper concentration (expressed in microg/g dry weight) to about the same extent in both strains. However, dietary cholesterol did not reduce the absolute (expressed as microg/whole liver) and relative (expressed as microg/whole liver/100 g body weight) copper store of rats. The decrease of liver copper concentration after the high fat, high cholesterol diet is probably not caused by a decrease in whole hepatic copper content, but rather due to dietary-induced hepatomegaly.  相似文献   
127.
The flavin monooxygenases (FMO) catalyse the NADPH and oxygen-dependent oxidation of a wide range of nucleophilic nitrogen-, sulfur-, phosphorus-, and selenium heteroatom-containing chemicals, drugs, and agricultural agents. In the present study, sheep liver microsomal FMO activity was determined by measuring the S-oxidation rate of methimazole and the average specific activity obtained from different microsomal preparations was found to be 3.8 +/- 1.5 nmol methimazole oxidized min(-1) mg(-1) microsomal protein (mean +/- SE, n = 7). The presence of 0.1% Triton X-100 in the reaction mixture caused an increase of specific sheep liver microsomal FMO activity towards methimazole to 6.1 +/- 1.4 nmol methimazole oxidized min(-1) mg(-1) microsomal protein (mean +/- SE, n = 6). Metabolism of imipramine and chlorpromazine was measured by following the oxidation of cofactor NADPH spectrophotometrically at 340 nm. Sheep liver microsomal FMO activity towards imipramine and chlorpromazine was found to be 10.7 and 12.3 nmol NADPH oxidized min(-1) mg(-1) microsomal protein, respectively. Characterization of sheep liver enzyme was carried out using methimazole as substrate and the maximum FMO enzyme activity was detected at 37 degrees C and at pH 8.0. The apparent K(m) value of sheep liver microsomal FMO for methimazole was 0.118 mM. Effects of the detergents Triton X-100, Cholate, and Emulgen 913, on FMO activity were determined and FMO activity was found to increase with the addition of detergents to the reaction medium. Sheep liver microsomal FMO-catalysed methimazole oxidation was inhibited by imipramine and chlorpromazine when these drugs were used at high concentrations. Western blot-immunochemical analysis revealed the presence of FMO3 in sheep liver microsomes.  相似文献   
128.
The leafy parts of thyme and its essential oil have been used in foods for its flavour, aroma and preservation for many years. In the present study the genotoxic potential of major compounds of thyme oil, i.e. thymol, carvacrol, and gamma-terpinene and of the methanolic extracts of thyme, were investigated in human lymphocytes by single-cell gel electrophoresis. Also, the effects of these substances on the induction of DNA damage by 2-amino-3-methylimidazo[4,5-f]-quinoline (IQ) and mitomycin C (MMC) were evaluated. No increase in DNA strand breakage was observed at thymol and gamma-terpinene concentrations below 0.1 mM, but at the higher concentration of 0.2 mM significant increases in DNA damage were seen. Thymol and gamma-terpinene significantly reduced the DNA strand breakage induced by IQ and MMC at the lower concentrations studied. Carvacrol, which is an isomer of thymol, seemed to protect lymphocytes from the genotoxic effects of IQ and MMC at non-toxic concentrations below 0.05 mM, but at the higher concentration of 0.1 mM carvacrol itself induced DNA damage. Also the constituents of the n-hexane and ethyl acetate fractions prepared from the concentrated aqueous methanolic extracts of Thymus spicata protected lymphocytes against IQ- and MMC-induced DNA damage in a concentration-dependent manner.  相似文献   
129.
Urethane is a multi-site animal carcinogen and was classified as "reasonably anticipated to be a human carcinogen." Urethane is a fermentation by-product and found at appreciable levels in alcoholic beverages and foods such as bread and cheese. Recent work in this laboratory demonstrated for the first time that CYP2E1 is the principal enzyme responsible for urethane metabolism. The current studies were undertaken to assess the relationships between CYP2E1-mediated metabolism and urethane-induced genotoxicity and cell proliferation as determined by induction of micronucleated erythrocytes (MN) and expression of Ki-67, respectively, using CYP2E1-null and wild-type mice. Urethane was administered at 0 (vehicle), 1, 10, or 100mg/kg/day (p.o.), 5 days/week for 6 weeks. A significant dose-dependent increase in MN was observed in wild-type mice; however, a slight increase was measured in the MN-polychromatic erythrocytes in CYP2E1-null mice treated with 100mg/kg. A significant increase in the expression of Ki-67 was detected in the livers and the lungs (terminal bronchioles, alveoli, and bronchi) of wild-type mice administered 100mg urethane/kg in comparison to controls. In contrast, CYP2E1-null mice administered this dose exhibited negligible alterations in Ki-67 expression in the livers and lungs compared to controls. Interestingly, while Ki-67 expression in the forestomach decreased in wild-type mice, it increased in CYP2E1-null mice. Subsequent comparative metabolism studies demonstrated that total urethane-derived radioactivity in the plasma, liver, and lung was significantly higher in CYP2E1-null versus wild-type mice and un-metabolized urethane constituted greater than 83% of the radioactivity in CYP2E1-null mice. Un-metabolized urethane was not detectable in the plasma, liver, and lung of wild-type mice. In conclusion, these data demonstrated that CYP2E1-mediated metabolism of urethane, presumably via epoxide formation, is necessary for the induction of genotoxicity, and cell proliferation in the liver and lung of wild-type mice.  相似文献   
130.
Background: Sepsis is a generalized inflammatory response, which involves organ systems remote from the locus of the initial infectious insult, involves the release of cytokines and the subsequent formation of reactive oxygen and nitrogen species.Objective: The aim of this study was to investigate the possible protective effect of montelukast, a leukotriene receptor blocker, against oxidative damage in the liver and ileum of septic rats.Methods: Sepsis was induced by cecal ligation and puncture method in female Wistar albino rats. Sepsis and sham operated (control) groups received either saline or montelukast (10 mg/kg, ip) immediately after the operation and at 12 h. Twenty-four hours after the surgery, rats were decapitated and malondialdehyde (MDA) content—an index of lipid peroxidation, glutathione (GSH) levels—a key antioxidant, myeloperoxidase (MPO) activity—an index of neutrophil infiltration, and collagen contents were determined in the liver and ileum. Formation of reactive oxygen species in liver and ileal tissue samples was monitored by using chemiluminescence (CL) technique with luminol and lucigenin probes. Both tissues were also analyzed histologically. Serum lactate dehydrogenase (LDH) and tumor necrosis factor-α (TNF-α) level were assessed in trunk blood.Results: Sepsis resulted in decreased GSH levels, and increased MDA levels, MPO activity, CL levels and collagen contents in both the liver and the ileum (P<0.05–P<0.001) indicating the presence of the oxidative damage. Similarly, serum TNF-α and LDH were elevated in the sepsis group as compared to control group. On the other hand, montelukast treatment reversed all these biochemical indices, as well as histopathological alterations, which were induced by sepsis.Conclusion: Findings of the present study suggest that montelukast possesses an anti-inflammatory effect on sepsis-induced hepatic and intestinal damage and protects against oxidative injury by a neutrophil-dependent mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号