首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   33篇
  2020年   3篇
  2018年   2篇
  2016年   6篇
  2015年   3篇
  2014年   11篇
  2013年   2篇
  2012年   9篇
  2011年   12篇
  2010年   12篇
  2009年   8篇
  2008年   14篇
  2007年   10篇
  2006年   11篇
  2005年   9篇
  2004年   13篇
  2003年   8篇
  2002年   7篇
  2001年   7篇
  2000年   8篇
  1999年   4篇
  1998年   11篇
  1997年   8篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1993年   2篇
  1992年   6篇
  1991年   13篇
  1990年   13篇
  1989年   13篇
  1988年   9篇
  1987年   12篇
  1986年   6篇
  1985年   9篇
  1984年   5篇
  1983年   7篇
  1982年   11篇
  1981年   5篇
  1980年   4篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1972年   1篇
  1971年   4篇
  1970年   3篇
  1969年   2篇
  1967年   1篇
  1966年   2篇
  1961年   1篇
  1903年   1篇
排序方式: 共有333条查询结果,搜索用时 93 毫秒
121.
122.
123.
Hitchhiking effects of advantageous mutations have been invoked to explain reduced polymorphism in regions of low crossing-over in Drosophila. Besides reducing DNA heterozygosity, hitchhiking effects should produce strong linkage disequilibrium and a frequency spectrum skewed toward an excess of rare polymorphisms (compared to the neutral expectation). We measured DNA polymorphism in a Zimbabwe population of D. melanogaster at three loci, yellow, achaete, and suppressor of forked, located in regions of reduced crossing-over. Similar to previously published surveys of these genomic regions in other populations, we observed low levels of nucleotide variability. However, the frequency spectrum was compatible with a neutral model, and there was abundant evidence for recombination in the history of the yellow and ac genes. Thus, some aspects of the data cannot be accounted for by a simple hitchhiking model. An alternative hypothesis, background selection, might be compatible with the observed patterns of linkage disequilibrium and the frequency spectrum. However, this model cannot account for the observed reduction in nucleotide heterozygosity. Thus, there is currently no satisfactory theoretical model for the data from the tip and base of the X chromosome in D. melanogaster.   相似文献   
124.
The effect of inositol 1,4,5-trisphosphate [Ins-(1,4,5)P3] and caffeine on Ca2+ release from digitonin-permeabilised bovine adrenal chromaffin cells was examined by using the Ca2+ indicator fura-2 to monitor [Ca2+]. Permeabilised cells accumulated Ca2+ in the presence of ATP and addition of either Ins(1,4,5)P3 or caffeine released 17% or 40-50%, respectively, of the accumulated Ca2+, indicated by sustained rises in [Ca2+] in the cell suspension. Prior addition of Ins(1,4,5)P3 had no effect on the magnitude of the response to a subsequent addition of caffeine. The response to Ins(1,4,5)P3 was prevented by prior addition of caffeine or CaCl2, indicating that the Ins(1,4,5)P3 response was blocked by elevated [Ca2+]. The responses were essentially identical in the presence of the proton ionophore carbonyl cyanide m-chlorophenylhydrazone, indicating that the Ca2+ release was not from mitochondria or secretory granules and that a proton gradient was not required for Ca2+ accumulation into the Ins(1,4,5)P3- or caffeine-sensitive stores. Ca2+ release from the caffeine-sensitive store was selectively blocked by ryanodine. The Ins(1,4,5)P3-sensitive store was emptied by thapsigargin, which had no effect on caffeine responses. These data suggest that permeabilised chromaffin cells possess two distinct nonoverlapping Ca2+ stores sensitive to either Ins(1,4,5)P3 or caffeine and support previous conclusions that these stores possess different Ca2(+)-ATPases.  相似文献   
125.
126.
The levels of binding of [3H]dihydroalprenolol to beta-adrenergic receptors in the visual centres and frontal cortex from brains of control, dark-reared and monocularly deprived rats were compared. Receptor binding is changed in monocularly deprived rats in the lateral geniculate nuclei and superior colliculi of both sides. Scatchard analyses indicated that the changes in the [3H]dihydroalprenolol binding in the lateral geniculate nuclei were due to alterations in both receptor affinity and receptor number. No effect of dark-rearing could be detected.  相似文献   
127.
Lactating mammary epithelial cells secrete high levels of caseins and other milk proteins. The extent to which protein secretion from these cells occurs in a regulated fashion was examined in experiments on secretory acini isolated from the mammary glands of lactating mice at 10 d postpartum. Protein synthesis and secretion were assayed by following the incorporation or release, respectively, of [35S]methionine-labeled TCA-precipitable protein. The isolated cells incorporated [35S]methionine into protein linearly for at least 5 h with no discernible lag period. In contrast, protein secretion was only detectable after a lag of approximately 1 h, consistent with exocytotic secretion of proteins immediately after passage through the secretory pathway and package into secretory vesicles. The extent of protein secretion was unaffected by the phorbol ester PMA, 8-bromo-cAMP, or 8-bromo-cGMP but was doubled by the Ca2+ ionophore ionomycin. In a pulse-label protocol in which proteins were prelabeled for 1 h before a chase period, constitutive secretion was unaffected by depletion of cytosolic Ca2+ but ionomycin was found to give a twofold stimulation of the secretion of presynthesized protein in a Ca(2+)-dependent manner. Ionomycin was still able to stimulate protein secretion after constitutive secretion had terminated. These results suggest that lactating mammary cells possess both a Ca(2+)-independent constitutive pathway and a Ca(2+)-activated regulatory pathway for protein secretion. The same proteins were secreted by both pathways. No ultrastructural evidence for apocrine secretion was seen in response to ionomycin and so it appears that regulated casein release involves exocytosis. Ionomycin was unlikely to be acting by disassembling the cortical actin network since cytochalasin D did not mimic its effects on secretion. The regulated pathway may be controlled by Ca2+ acting at a late step such as exocytotic membrane fusion.  相似文献   
128.
129.
We have observed a chromosomal marker which has both the appearance and behavior of a fragile site and is associated with the mouse sex reversed (Sxr) mutation. The observation of a chromosomal fragile site at this location is of interest since it is a region of enhanced meiotic recombination, Sxr being adjacent to the site of exchange between the X and Y chromosomes in the male. However it is an unusual fragile site in two respects: it is spontaneously expressed in relatively high frequency and this expression is tissue specific. We have observed the fragile site in extraembryonic tissues, preimplantation embryos and premeiotic germ cells, all of which share the property of being undermethylated by comparison with embryonic tissues.  相似文献   
130.
Tempo and mode of concerted evolution in the L1 repeat family of mice   总被引:10,自引:0,他引:10  
A 300-bp DNA sequence has been determined for 30 (10 from each of three species of mice) random isolates of a subset of the long interspersed repeat family L1. From these data we conclude that members of the L1 family are evolving in concert at the DNA sequence level in Mus domesticus, Mus caroli, and Mus platythrix. The mechanism responsible for this phenomenon may be either duplicative transposition, gene conversion, or a combination of the two. The amount of intraspecies divergence averages 4.4%, although between species base substitutions accumulate at the rate of approximately 0.85%/Myr to a maximum divergence of 9.1% between M. platythrix and both M. domesticus and M. caroli. Parsimony analysis reveals that the M. platythrix L1 family has evolved into a distinct clade in the 10-12 Myr since M. platythrix last shared a common ancestor with M. domesticus and M. caroli. The parsimony tree also provides a means to derive the average half-life of L1 sequences in the genome. The rates of gain and loss of individual copies of L1 were estimated to be approximately equal, such that approximately one-half of them turn over every 3.3 Myr.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号