首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   33篇
  2020年   3篇
  2018年   2篇
  2016年   6篇
  2015年   3篇
  2014年   11篇
  2013年   2篇
  2012年   9篇
  2011年   12篇
  2010年   12篇
  2009年   8篇
  2008年   14篇
  2007年   10篇
  2006年   11篇
  2005年   9篇
  2004年   13篇
  2003年   8篇
  2002年   7篇
  2001年   7篇
  2000年   8篇
  1999年   4篇
  1998年   11篇
  1997年   8篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1993年   2篇
  1992年   6篇
  1991年   13篇
  1990年   13篇
  1989年   13篇
  1988年   9篇
  1987年   12篇
  1986年   6篇
  1985年   9篇
  1984年   5篇
  1983年   7篇
  1982年   11篇
  1981年   5篇
  1980年   4篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1972年   1篇
  1971年   4篇
  1970年   3篇
  1969年   2篇
  1967年   1篇
  1966年   2篇
  1961年   1篇
  1903年   1篇
排序方式: 共有333条查询结果,搜索用时 31 毫秒
111.
Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca2+-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca2+/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site. We find that two copies of the D2R peptide bind within the hydrophobic crevice on Ca2+/NCS-1, but only one copy of the GRK1 peptide binds. The different binding modes are made possible by the C-lobe-binding site of NCS-1, which adopts alternative conformations in each complex. C-terminal residues Ser-178–Val-190 act in concert with the flexible EF3/EF4 loop region to effectively form different peptide-binding sites. In the Ca2+/NCS-1·D2R peptide complex, the C-terminal region adopts a 310 helix-turn-310 helix, whereas in the GRK1 peptide complex it forms an α-helix. Removal of Ser-178–Val-190 generated a C-terminal truncation mutant that formed a dimer, indicating that the NCS-1 C-terminal region prevents NCS-1 oligomerization. We propose that the flexible nature of the C-terminal region is essential to allow it to modulate its protein-binding sites and adapt its conformation to accommodate both ligands. This appears to be driven by the variability of the conformation of the C-lobe-binding site, which has ramifications for the target specificity and diversity of NCS-1.  相似文献   
112.
113.
The process of regulated exocytosis has received considerable interest as a key component of synaptic transmission. Fusion of presynaptic vesicles and the subsequent release of their neurotransmitter contents is driven by a series of interactions between evolutionarily conserved proteins. Key insights into the molecular mechanisms of vesicle fusion have come from research using genetic model systems such as the nematode worm Caenorhabditis elegans. We review here the current knowledge regarding regulated exocytosis at the C. elegans synapse and future research directions involving this model organism.  相似文献   
114.
115.
Chromosome synapsis during zygotene is a prerequisite for the timely homologous recombinational repair of meiotic DNA double-strand breaks (DSBs). Unrepaired DSBs are thought to trigger apoptosis during midpachytene of male meiosis if synapsis fails. An early pachytene response to asynapsis is meiotic silencing of unsynapsed chromatin (MSUC), which, in normal males, silences the X and Y chromosomes (meiotic sex chromosome inactivation [MSCI]). In this study, we show that MSUC occurs in Spo11-null mouse spermatocytes with extensive asynapsis but lacking meiotic DSBs. In contrast, three mutants (Dnmt3l, Msh5, and Dmc1) with high levels of asynapsis and numerous persistent unrepaired DSBs have a severely impaired MSUC response. We suggest that MSUC-related proteins, including the MSUC initiator BRCA1, are sequestered at unrepaired DSBs. All four mutants fail to silence the X and Y chromosomes (MSCI failure), which is sufficient to explain the midpachytene apoptosis. Apoptosis does not occur in mice with a single additional asynapsed chromosome with unrepaired meiotic DSBs and no disturbance of MSCI.  相似文献   
116.
Munc18-1 plays a crucial role in regulated exocytosis in neurons and neuroendocrine cells through modulation of vesicle docking and membrane fusion. The molecular basis for Munc18 function is still unclear, as are the links with Rabs and SNARE [SNAP (soluble N-ethylmaleimide-sensitive factor-attachment protein) receptor] proteins that are also required. Munc18-1 can bind to SNAREs through at least three modes of interaction, including binding to the closed conformation of syntaxin 1. Using a gain-of-function mutant of Munc18-1 (E466K), which is based on a mutation in the related yeast protein Sly1p, we have identified a direct interaction of Munc18-1 with Rab3A, which is increased by the mutation. Expression of Munc18-1 with the E466K mutation increased exocytosis in adrenal chromaffin cells and PC12 cells (pheochromocytoma cells) and was found to increase the density of secretory granules at the periphery of PC12 cells, suggesting a stimulatory effect on granule recruitment through docking or tethering. Both the increase in exocytosis and changes in granule distribution appear to require Munc18-1 E466K binding to the closed form of syntaxin 1, suggesting a role for this interaction in bridging Rab- and SNARE-mediated events in exocytosis.  相似文献   
117.
Exocytosis is regulated by NO in many cell types, including neurons. In the present study we show that syntaxin 1a is a substrate for S-nitrosylation and that NO disrupts the binding of Munc18-1 to the closed conformation of syntaxin 1a in vitro. In contrast, NO does not inhibit SNARE {SNAP [soluble NSF (N-ethylmaleimide-sensitive fusion protein) attachment protein] receptor} complex formation or binding of Munc18-1 to the SNARE complex. Cys(145) of syntaxin 1a is the target of NO, as a non-nitrosylatable C145S mutant is resistant to NO and novel nitrosomimetic Cys(145) mutants mimic the effect of NO on Munc18-1 binding in vitro. Furthermore, expression of nitrosomimetic syntaxin 1a in living cells affects Munc18-1 localization and alters exocytosis release kinetics and quantal size. Molecular dynamic simulations suggest that NO regulates the syntaxin-Munc18 interaction by local rearrangement of the syntaxin linker and H3c regions. Thus S-nitrosylation of Cys(145) may be a molecular switch to disrupt Munc18-1 binding to the closed conformation of syntaxin 1a, thereby facilitating its engagement with the membrane fusion machinery.  相似文献   
118.
The biomechanics of the optic nerve head (ONH) may underlie many of the potential mechanisms that initiate the characteristic vision loss associated with primary open angle glaucoma. Therefore, it is important to characterize the physiological levels of stress and strain in the ONH and how they may change in relation to material properties, geometry, and microstructure of the tissue. An idealized, analytical microstructural model of the ONH load bearing tissues was developed based on an octagonal cellular solid that matched the porosity and pore area of morphological data from the lamina cribrosa (LC). A complex variable method for plane stress was applied to relate the geometrically dependent macroscale loads in the sclera to the microstructure of the LC, and the effect of different geometric parameters, including scleral canal eccentricity and laminar and scleral thickness, was examined. The transmission of macroscale load in the LC to the laminar microstructure resulted in stress amplifications between 2.8 and 24.5xIOP. The most important determinants of the LC strain were those properties pertaining to the sclera and included Young's modulus, thickness, and scleral canal eccentricity. Much larger strains were developed perpendicular to the major axis of an elliptical canal than in a circular canal. Average strain levels as high as 5% were obtained for an increase in IOP from 15 to 50 mm Hg.  相似文献   
119.

Background  

Binding of serum components by surface M-related proteins, encoded by the emm genes, in streptococci constitutes a major virulence factor in this important group of organisms. The present study demonstrates fibrinogen binding by S. iniae, a Lancefield non-typeable pathogen causing devastating fish losses in the aquaculture industry and an opportunistic pathogen of humans, and identifies the proteins involved and their encoding genes.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号