首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   9篇
  2023年   3篇
  2022年   4篇
  2021年   11篇
  2020年   8篇
  2019年   11篇
  2018年   12篇
  2017年   9篇
  2016年   10篇
  2015年   10篇
  2014年   14篇
  2013年   15篇
  2012年   12篇
  2011年   12篇
  2010年   12篇
  2009年   7篇
  2008年   5篇
  2007年   5篇
  2006年   8篇
  2005年   6篇
  2004年   3篇
  2003年   1篇
排序方式: 共有178条查询结果,搜索用时 640 毫秒
101.
The E3 ligase c-Cbl ubiquitinates protease-activated receptor 2 (PAR(2)), which is required for post-endocytic sorting of PAR(2) to lysosomes, where degradation arrests signaling. The mechanisms of post-endocytic sorting of ubiquitinated receptors are incompletely understood. Here, we investigated the role of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), in post-endocytic sorting and signaling of PAR(2). In HEK-PAR(2) cells, PAR(2) activating peptide (PAR(2)-AP) induced PAR(2) trafficking from the cell surface to early endosomes containing endogenous HRS, and then to lysosomes. HRS overexpression or knockdown with small interfering RNA caused formation of enlarged HRS-positive endosomes, where activated PAR(2) and c-Cbl accumulated, and PAR(2) failed to traffic to lysosomes. Overexpression of HRS prevented PAR(2)-AP-induced degradation of PAR(2), as determined by Western blotting. Overexpression of HRS mutant lacking an ubiquitin-binding motif similarly caused retention of PAR(2) in enlarged endosomes. Moreover, HRS overexpression or knockdown caused retention of ubiquitin-resistant PAR(2)Delta14K/R in enlarged HRS-containing endosomes, preventing recycling and resensitization of PAR(2)Delta14K/R. HRS overexpression or knockdown similarly prevented lysosomal trafficking and recycling of calcitonin receptor-like receptor, a non-ubiquitinated receptor that traffics to lysosomes after sustained activation and recycles after transient activation. Thus, HRS plays a critically important role in the post-endocytic sorting of single receptors, PAR(2) and CLR, to both degradative and recycling pathways. This sorting role for HRS is independent of its ubiquitin-interacting motif, and it can regulate trafficking of both ubiquitinated and non-ubiquitinated PAR(2) and non-ubiquitinated CLR. The ultimate sorting decision to degradative or recycling pathways appears to occur downstream from HRS.  相似文献   
102.
103.
Crude alpha-glucosidase from Baker's yeast was immobilized in polygalacturonic acid beads and coated with chitosan. Chemical and physical characterization were performed by using p-nitrophenyl-alpha-D-glucopyranoside (pNPG) as an artificial substrate. Operation, thermal, pH, and strorage stabilities of the free and immobilized enzyme were also examined. The stabilities of immobilized enzyme were found to be better than that of the free enzyme. Furthermore, the hydrolysis rate of the chitosan coated alpha-glucosidase polygalacturonic acid beads were studied. In conclusion, the enzyme beads appear to have good characteristics and offer the prospect that this system may find application in enzyme immobilization, in addition to controlled drug release studies.  相似文献   
104.
In this study, bioaccumulation of heavy metal and dye by Aspergillus versicolor was investigated. Optimum pH values of the maximum heavy metal bioaccumulation was found as 6 for 50 mg/L Cr(VI), Ni(II) and 5 for Cu(II) ions with the 99.89%, 30.05% and 29.06% removal yield, respectively. The bioremoval of the dye up to 800 mg/L at pH 5 and 6 was investigated and 27.15% and 28.95% removal rates were measured respectively. The presence of Cr(VI) with dye, decreased the uptake yield for both pollutants. In the medium with Cu(II) and dye, dye removal was not affected by Cu(II), but Cu(II) removal rate increased from 29.06% to 37.91% by the existence of the dye. When Ni(II) and dye were combined, neither pollutant affected the other’s removal yield. These results indicate that the isolated A. versicolor strain deserves attention as a promising bioaccumulator of heavy metal ions and reactive dyes in wastewater effluents.  相似文献   
105.
The identification of significant individual factors causing complex diseases is challenging in genome-wide association studies (GWAS) since each factor has only a modest effect on the disease development mechanism. In this study, we hypothesize that the biological pathways that are targeted by these individual factors show higher conservation within and across populations. To test this hypothesis, we searched for the disease related pathways on two intracranial aneurysm GWAS in European and Japanese case–control cohorts. Even though there were a few significantly conserved SNPs within and between populations, seven of the top ten affected pathways were found significant in both populations. The probability of random occurrence of such an event is 2.44E−36. We therefore claim that even though each individual has a unique combination of factors involved in the mechanism of disease development, most targeted pathways that need to be altered by these factors are, for the most part, the same. These pathways can serve as disease markers. Individuals, for example, can be scanned for factors affecting the genes in marker pathways. Hence, individual factors of disease development can be determined; and this knowledge can be exploited for drug development and personalized therapeutic applications. Here, we discuss the potential avenues of pathway markers in medicine and their translation to preventive and individualized health care.  相似文献   
106.
107.
The accuracy of risk prediction for coronary artery disease can be improved with the use of novel molecular or genetic biomarkers. In this study, we investigated the difference of five selected microRNAs (miR or miRNA) in patients with coronary artery disease (CAD) and controls, assessed by coronary angiography. The study population consisted of 85 subjects, aged between 18 and 75 years and underwent invasive coronary angiography. Subjects with more than 30% stenosis in at least one coronary artery, patients with a history of prior percutaneous coronary intervention or coronary by-pass surgery were allocated to the patient group; whereas the subjects without at least 30% stenosis consisted the control group. Groups were similar in age, presence of hypertension, and smoking status. However, the proportion of males and subjects taking angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, beta blockers, nitrates, and statins were higher in the patient group. miR-221 and miR-155 were downregulated (P = .02 and .001, respectively), while miR-21 levels were significantly increased (P = .003) in the patient group compared to controls. Changes in miR-145 and miR-126 did not reach statistical significance (P > .05). miRNA- 21, miR-155, and miR-221 were differentially expressed between the patients and controls. miRNAs are promising biomarkers for CAD diagnosis, however, this requires further research with larger groups.  相似文献   
108.
Antibody suspension bead arrays have proven to enable multiplexed and high‐throughput protein profiling in unfractionated plasma and serum samples through a direct labeling approach. We here describe the development and application of an assay for protein profiling of cerebrospinal fluid (CSF). While setting up the assay, systematic intensity differences between sample groups were observed that reflected inherent sample specific total protein amounts. Supplementing the labeling reaction with BSA and IgG diminished these differences without impairing the apparent sensitivity of the assay. We also assessed the effects of heat treatment on the analysis of CSF proteins and applied the assay to profile 43 selected proteins by 101 antibodies in 339 CSF samples from a multiple sclerosis (MS) cohort. Two proteins, GAP43 and SERPINA3 were found to have a discriminating potential with altered intensity levels between sample groups. GAP43 was detected at significantly lower levels in secondary progressive MS compared to early stages of MS and the control group of other neurological diseases. SERPINA3 instead was detected at higher levels in all MS patients compared to controls. The developed assay procedure now offers new possibilities for broad‐scale protein profiling of CSF within neurological disorders.  相似文献   
109.
110.
Binding of the utmost N-terminus of essential myosin light chains (ELC) to actin slows down myosin motor function. In this study, we investigated the binding constants of two different human cardiac ELC isoforms with actin. We employed circular dichroism (CD) and surface plasmon resonance (SPR) spectroscopy to determine structural properties and protein–protein interaction of recombinant human atrial and ventricular ELC (hALC-1 and hVLC-1, respectively) with α-actin as well as α-actin with alanin-mutated ELC binding site (α-actinala3) as control. CD spectroscopy showed similar secondary structure of both hALC-1 and hVLC-1 with high degree of α-helicity. SPR spectroscopy revealed that the affinity of hALC-1 to α-actin (KD = 575 nM) was significantly (p < 0.01) lower compared with the affinity of hVLC-1 to α-actin (KD = 186 nM). The reduced affinity of hALC-1 to α-actin was mainly due to a significantly (p < 0.01) lower association rate (kon: 1018 M−1 s−1) compared with kon of the hVLC-1/α-actin complex interaction (2908 M−1 s−1). Hence, differential expression of ELC isoforms could modulate muscle contractile activity via distinct α-actin interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号