首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   12篇
  231篇
  2024年   2篇
  2023年   5篇
  2022年   7篇
  2021年   11篇
  2020年   11篇
  2019年   8篇
  2018年   5篇
  2017年   3篇
  2016年   11篇
  2015年   11篇
  2014年   13篇
  2013年   32篇
  2012年   18篇
  2011年   15篇
  2010年   8篇
  2009年   6篇
  2008年   9篇
  2007年   10篇
  2006年   9篇
  2005年   8篇
  2004年   4篇
  2003年   6篇
  2002年   7篇
  2001年   2篇
  1999年   1篇
  1997年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1984年   2篇
排序方式: 共有231条查询结果,搜索用时 15 毫秒
31.
Atomically dispersed Fe–N–C catalysts are considered the most promising precious‐metal‐free alternative to state‐of‐the‐art Pt‐based oxygen reduction electrocatalysts for proton‐exchange membrane fuel cells. The exceptional progress in the field of research in the last ≈30 years is currently limited by the moderate active site density that can be obtained. Behind this stands the dilemma of metastability of the desired FeN4 sites at the high temperatures that are believed to be a requirement for their formation. It is herein shown that Zn2+ ions can be utilized in the novel concept of active‐site imprinting based on a pyrolytic template ion reaction throughout the formation of nitrogen‐doped carbons. As obtained atomically dispersed Zn–N–Cs comprising ZnN4 sites as well as metal‐free N4 sites can be utilized for the coordination of Fe2+ and Fe3+ ions to form atomically dispersed Fe–N–C with Fe loadings as high as 3.12 wt%. The Fe–N–Cs are active electocatalysts for the oxygen reduction reaction in acidic media with an onset potential of E0 = 0.85 V versus RHE in 0.1 m HClO4. Identical location atomic resolution transmission electron microscopy imaging, as well as in situ electrochemical flow cell coupled to inductively coupled plasma mass spectrometry measurements, is employed to directly prove the concept of the active‐site imprinting approach.  相似文献   
32.
Poly adenosine diphosphate-ribose polymerase-1 (PARP-1) is a multifunctional enzyme that is involved in two major cellular responses to oxidative and nitrosative (O/N) stress: detection and response to DNA damage via formation of protein-bound poly adenosine diphosphate-ribose (PAR), and formation of the soluble 2nd messenger monomeric adenosine diphosphate-ribose (mADPR). Previous studies have delineated specific roles for several of PARP-1′s structural domains in the context of its involvement in a DNA damage response. However, little is known about the relationship between the mechanisms through which PARP-1 participates in DNA damage detection/response and those involved in the generation of monomeric ADPR. To better understand the relationship between these events, we undertook a structure/function analysis of PARP-1 via reconstitution of PARP-1 deficient DT40 cells with PARP-1 variants deficient in catalysis, DNA binding, auto-PARylation, and PARP-1′s BRCT protein interaction domain. Analysis of responses of the respective reconstituted cells to a model O/N stressor indicated that PARP-1 catalytic activity, DNA binding, and auto-PARylation are required for PARP-dependent mADPR formation, but that BRCT-mediated interactions are dispensable. As the BRCT domain is required for PARP-dependent recruitment of XRCC1 to sites of DNA damage, these results suggest that DNA repair and monomeric ADPR 2nd messenger generation are parallel mechanisms through which PARP-1 modulates cellular responses to O/N stress.  相似文献   
33.
Background and AimsRhizosheaths are defined as the soil adhering to the root system after it is extracted from the ground. Root hairs and mucilage (root exudates) are key root traits involved in rhizosheath formation, but to better understand the mechanisms involved their relative contributions should be distinguished.MethodsThe ability of three species [barley (Hordeum vulgare), maize (Zea mays) and Lotus japonicus (Gifu)] to form a rhizosheath in a sandy loam soil was compared with that of their root-hairless mutants [bald root barley (brb), maize root hairless 3 (rth3) and root hairless 1 (Ljrhl1)]. Root hair traits (length and density) of wild-type (WT) barley and maize were compared along with exudate adhesiveness of both barley and maize genotypes. Furthermore, root hair traits and exudate adhesiveness from different root types (axile versus lateral) were compared within the cereal species.Key ResultsPer unit root length, rhizosheath size diminished in the order of barley > L. japonicus > maize in WT plants. Root hairs significantly increased rhizosheath formation of all species (3.9-, 3.2- and 1.8-fold for barley, L. japonicus and maize, respectively) but there was no consistent genotypic effect on exudate adhesiveness in the cereals. While brb exudates were more and rth3 exudates were less adhesive than their respective WTs, maize rth3 bound more soil than barley brb. Although both maize genotypes produced significantly more adhesive exudate than the barley genotypes, root hair development of WT barley was more extensive than that of WT maize. Thus, the greater density of longer root hairs in WT barley bound more soil than WT maize. Root type did not seem to affect rhizosheath formation, unless these types differed in root length.ConclusionsWhen root hairs were present, greater root hair development better facilitated rhizosheath formation than root exudate adhesiveness. However, when root hairs were absent root exudate adhesiveness was a more dominant trait.  相似文献   
34.
The origin of the eukaryotic cell is a major open question in biology. Asgard archaea are the closest known prokaryotic relatives of eukaryotes, and their genomes encode various eukaryotic signature proteins, indicating some elements of cellular complexity prior to the emergence of the first eukaryotic cell. Yet, microscopic evidence to demonstrate the cellular structure of uncultivated Asgard archaea in the environment is thus far lacking. We used primer-free sequencing to retrieve 715 almost full-length Loki- and Heimdallarchaeota 16S rRNA sequences and designed novel oligonucleotide probes to visualize their cells in marine sediments (Aarhus Bay, Denmark) using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Super-resolution microscopy revealed 1–2 µm large, coccoid cells, sometimes occurring as aggregates. Remarkably, the DNA staining was spatially separated from ribosome-originated FISH signals by 50–280 nm. This suggests that the genomic material is condensed and spatially distinct in a particular location and could indicate compartmentalization or membrane invagination in Asgard archaeal cells.Subject terms: Soil microbiology, Microbial ecology, Archaeal physiology  相似文献   
35.
Gur M  Erman B 《Physical biology》2010,7(4):046006
Mode coupling and anharmonicity in a native fluctuating protein are investigated in modal space by projecting the motion along the eigenvectors of the fluctuation correlation matrix. The probability distribution of mode fluctuations is expressed in terms of tensorial Hermite polynomials. Molecular dynamics trajectories of Crambin are generated and used to evaluate the terms of the polynomials and to obtain the modal energies. The energies of a few modes exhibit large deviations from the harmonic energy of kT/2 per mode, resulting from coupling to the surroundings, or to another specific mode or to several other modes. Slowest modes have energies that are below that of the harmonic, and a few fast modes have energies significantly larger than the harmonic. Detailed analysis of the coupling of these modes to others is presented in terms of the lowest order two-mode coupling terms. Finally, the effects of mode coupling on conformational properties of the protein are investigated.  相似文献   
36.
Modeling population responses of nerve fibers requires statistical characterization of fiber-response properties. The rate/intensity characteristics of cat rapidly adapting (RA) fibers were fitted by four-parameter, piece-wise linear functions using nonlinear regression (n = 14; R2 > 0.958). The parameters were tested against the null hypothesis that they are log normally distributed. The test fail to reject this hypothesis (Kolmogorov-Smirnov p>0.477). However, a significant statistical difference was found between the specific lognormal distributions obtained from monkey (Johnson, J Neurophysiol 37: 48-72, 1974) and cat for all four parameters (Kolmogorov-Smirnov, p<0.0075, p<0.05, p<0.0001, p<0.00007). Although the stimulus contactor size was not the same in monkey and cat studies, the differences between monkey and cat fibers are attributed to anatomical differences in the glabrous sin of both species. Modeling studies suggest that the absolute firing thresholds of RA fibers have a right-skewed distribution because of the anatomical constraints present in both species' skin. Meissner corpuscles, which are the sensory end-organs of RA fibers, are likely to be found deeper in the skin within dermal papilla, therefore, the thresholds can be elevated. However, the thresholds are bounded at lower end, probably due to the epidermal junction that acts as a superficial mechanical barrier for these corpuscles.  相似文献   
37.
We investigated the protective role of aminoguanidine (AG) in rat liver injury induced by chronic biliary obstruction. Secondary biliary cirrhosis was induced by bile duct ligation for 14 days. Swiss albino rats were divided into three groups: Common bile duct ligated (CBDL) rats; Group A, CBDL rats treated with AG as Group B and simple laparotomy group known as the Sham group; Group C. Group B received 200 mg/kg of AG intraperitoneally daily throughout 14 days. The present data showed decreased gama glutamyl transferase (GGT), aspartate aminotransferase (AST), bilirubin and alanine aminotransferase (ALT) levels in the AG treated rats, when compared with CBDL rats (p < 0.05). In the AG treated rats, tissue levels of malondialdehyde (MDA) were significantly lower than that in CBDL rats (p < 0.001). Although the levels of glutathione (GSH) in AG treated rats were higher and myeloperoxidase (MPO) were lower than that in CBDL rats, the difference was not statistically significant (p > 0.05). The levels of interleukin-1alpha (IL-1alpha) and tumor necrosis factor-alpha (TNF-alpha) were significantly lower and although the levels of interleukin-6 (IL-6) were lower in AG treated rats than that in CBDL rats, the difference was not statistically significant. Administration of AG in the rats with biliary obstruction resulted in inhibition of ductular proliferation and portal inflammation. The present study demonstrates that intraperitoneal administration of AG in CBDL rats maintains antioxidant defenses, reduces liver oxidative and cytokine damage and ductular proliferation and portal inflammation. This effect of AG may be useful in the preservation of liver injury in cholestasis.  相似文献   
38.
39.
Ulucan O  Keskin O  Erman B  Gursoy A 《PloS one》2011,6(9):e24664
Histone modifications have great importance in epigenetic regulation. JMJD2A is a histone demethylase which is selective for di- and trimethyl forms of residues Lys9 and Lys36 of Histone 3 tail (H3K9 and H3K36). We present a molecular dynamics simulations of mono-, di- and trimethylated histone tails in complex with JMJD2A catalytic domain to gain insight into how JMJD2A discriminates between the methylation states of H3K9. The methyl groups are located at specific distances and orientations with respect to Fe(II) in methylammonium binding pocket. For the trimethyllysine the mechanism which provides the effectual orientation of methyl groups is the symmetry, whereas for the dimethyllysine case the determining factors are the interactions between methyllysine head and its environment and subsequently the restriction on angular motion. The occurrence frequency of methyl groups in a certain proximity of Fe(II) comes out as the explanation of the enzyme activity difference on di- and tri-methylated peptides. Energy analysis suggests that recognition is mostly driven by van der Waals and followed by Coulombic interactions in the enzyme-substrate interface. The number (mono, di or tri) and orientations of methyl groups and water molecules significantly affect the extent of van der Waals interaction strengths. Hydrogen bonding analysis suggests that the interaction between JMJD2A and its substrates mainly comes from main chain-side chain interactions. Binding free energy analysis points out Arg8 as an important residue forming an intra-substrate hydrogen bond with tri and dimethylated Lys9 of the H3 chain. Our study provides new insights into how JMJD2A discriminates between its substrates from both a structural and dynamical point of view.  相似文献   
40.
Root exudates and rhizosheaths of attached soil are important features of growing roots. To elucidate factors involved in rhizosheath formation, wild-type (WT) barley (Hordeum vulgare L. cv. Pallas) and a root hairless mutant, bald root barley (brb), were investigated with a combination of physiological, biochemical, and immunochemical assays. When grown in soil, WT barley roots bound ∼5-fold more soil than brb per unit root length. High molecular weight (HMW) polysaccharide exudates of brb roots had less soil-binding capacity than those of WT root exudates. Carbohydrate and glycan monoclonal antibody analyses of HMW polysaccharide exudates indicated differing glycan profiles. Relative to WT plants, root exudates of brb had reduced signals for arabinogalactan-protein (AGP), extensin, and heteroxylan epitopes. In contrast, the root exudate of 2-week-old brb plants contained ∼25-fold more detectable xyloglucan epitope relative to WT. Root system immunoprints confirmed the higher levels of release of the xyloglucan epitope from brb root apices and root axes relative to WT. Epitope detection with anion-exchange chromatography indicated that the increased detection of xyloglucan in brb exudates was due to enhanced abundance of a neutral polymer. Conversely, brb root exudates contained decreased amounts of an acidic polymer, with soil-binding properties, containing the xyloglucan epitope and glycoprotein and heteroxylan epitopes relative to WT. We, therefore, propose that, in addition to physically structuring soil particles, root hairs facilitate rhizosheath formation by releasing a soil-binding polysaccharide complex.

The root exudate of a root hairless mutant of barley, relative to wild type, has an altered pattern of polysaccharide epitopes and lesser amounts of an acidic soil-binding polysaccharide complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号