首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9204篇
  免费   745篇
  9949篇
  2021年   87篇
  2020年   41篇
  2019年   72篇
  2018年   92篇
  2017年   106篇
  2016年   133篇
  2015年   211篇
  2014年   273篇
  2013年   492篇
  2012年   374篇
  2011年   391篇
  2010年   253篇
  2009年   240篇
  2008年   413篇
  2007年   427篇
  2006年   384篇
  2005年   413篇
  2004年   412篇
  2003年   417篇
  2002年   335篇
  2001年   375篇
  2000年   393篇
  1999年   332篇
  1998年   105篇
  1997年   114篇
  1996年   100篇
  1995年   112篇
  1994年   87篇
  1993年   94篇
  1992年   236篇
  1991年   221篇
  1990年   238篇
  1989年   194篇
  1988年   184篇
  1987年   172篇
  1986年   150篇
  1985年   145篇
  1984年   123篇
  1983年   106篇
  1982年   83篇
  1981年   68篇
  1980年   55篇
  1979年   85篇
  1978年   81篇
  1977年   67篇
  1976年   44篇
  1975年   38篇
  1974年   49篇
  1973年   40篇
  1972年   48篇
排序方式: 共有9949条查询结果,搜索用时 9 毫秒
181.
Phenylcarbonate, benzoylformate, and p-toluenesulfonylcarbamate of cellulose and five new benzoylcarbamate derivatives of both cellulose and amylose were synthesized and their chiral recognition abilities were evaluated as chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC). Cellulose benzoylcarbamate has a higher chiral recognition ability compared to phenylcarbonate, p-toluenesulfonylcarbamate, and benzoylformate of cellulose. The benzoylcarbamate derivatives exhibited a characteristic chiral recognition for the racemates, which bear a hydrogen atom capable of hydrogen bonding to the carbonyl group of the benzoylcarbamates. The structures of the benzoylcarbamates were investigated by CD spectroscopy.  相似文献   
182.
Transcriptional induction of Smurf2 ubiquitin ligase by TGF-beta   总被引:1,自引:0,他引:1  
Smad ubiquitination regulatory factor 2 (Smurf2), a ubiquitin ligase for Smads, plays critical roles in the regulation of transforming growth factor-beta (TGF-beta)-Smad signaling via ubiquitin-dependent degradation of Smad2 and Smad7. We found that TGF-beta stimulates Smurf2 expression. TGF-beta activated the Smurf2 promoter in a TGF-beta responsive cell lines, whereas IL-1alpha, PDGF and epidermal growth factor did not. TGF-beta-mediated Smurf2 promoter activation was inhibited by Smad7 or an activin receptor-like kinase 5 inhibitor but not by dominant negative Smad or disruption of Smad-binding elements in the promoter. Moreover, inhibition of the phosphatidil inositol 3 kinase (PI3K)/Akt pathway suppressed TGF-beta-mediated Smurf2 induction. These results suggest that TGF-beta stimulates Smurf2 expression by Smad-independent pathway such as PI3K/Akt pathway via TGF-beta receptor.  相似文献   
183.
High-dose methamphetamine (METH) is associated with long-term deficits in dopaminergic systems. Although the mechanism(s) which contributes to these deficits is not known, glutamate and peroxynitrite are likely to play a role. These factors are hypothesized to inhibit mitochondrial function, increasing the free radical burden and decreasing neuronal energy supplies. Previous studies suggest a role for the mitochondrial electron transport chain (ETC) in mediating toxicity of METH. The purpose of the present studies was to determine whether METH administration selectively inhibits complex II of the ETC in rats. High-dose METH administration (10 mg/kg every 2 h x 4) rapidly (within 1 h) decreased complex II (succinate dehydrogenase) activity by approximately 20-30%. In addition, decreased activity of complex II-III, but not complex I-III, of the mitochondrial ETC was also observed 24 h after METH. This inhibition was not due to direct inhibition by METH or METH-induced hyperthermia and was specific to striatal brain regions. METH-induced decreases in complex II-III were prevented by MK-801 and the peroxynitrite scavenger 5,10,15,20-tetrakis (2,4,6-trimethyl-3,5-sulphonatophenyl) porphinato iron III. These findings provide the first evidence that METH administration, via glutamate receptor activation and peroxynitrite formation, selectively alters a specific site of the ETC.  相似文献   
184.
To identify erythroid-specific heme-regulated genes, we performed differential expression analysis between wild-type and heme-deficient erythroblasts, which had been prepared from wild-type and erythroid-specific delta-aminolevulinate synthase-null mouse ES cells, respectively. Among 8737 clones on cDNA array, 40 cDNA clones, including 34 unknown ESTs, were first selected by their high expression profiles in wild-type erythroblasts, and evaluated further for their erythroid-lineage specificity, expression in hematopoietic tissues in vivo, and heme-dependent expression, which yielded 11, 4, and 4 genes, respectively. Because of the selection strategy employed, the final 4 were considered as the newly identified erythroid-specific heme-regulated genes. These 4 genes were uncoupling protein 2, nucleolar spindle-associated protein, cellular nucleic acid-binding protein, and a novel acetyltransferase-like protein. These findings thus suggest that heme may regulate a wide variety of hitherto unrecognized genes, and further analysis of these genes may clarify their role in erythroid cell differentiation.  相似文献   
185.
186.
Effects of taurine or γ-aminobutyric acid (GABA) on akinesia and analgesia induced by D-Ala2-Met-enkephalinamide were investigated in rats. Administration of taurine (dose range: 2.375×10?2 M–9.5×10?2 M/10 μl) into the left lateral ventricle 10 min prior to the injection of D-Ala2-Met-enkephalinamide (50 μg/10 μl) produced a dose-dependent reduction in the duration of akinesia and to some extent of analgesia, as estimated at 30 min and 60 min following the enkephalinamide injection; at the first estimation-time (10 min), taurine did not alter the duration of akinesia or that of analgesia. The median effective dose (ED50) for akinesia determined at 60 min after D-Ala2-Met-enkephalinamide was 5 times greater and that for analgesia assessed at the same time was 1.7 times greater in taurine-treated rats than the respective doses in control animals. Administration of GABA under similar experimental conditions produced a dose-dependent reduction in the duration of analgesia from the initial estimation time (10 min) following the injection of D-Ala2-Met-enkephalinamide. The ED50 for analgesia determined at 30 min after D-Ala2-Met-enkephalinamide was 3 times greater in GABA-treated rats than in control animals. Unlike the effects of taurine, GABA did not alter the duration of akinesia. Neither the duration of akinesia nor that of analgesia was modified by taurine or GABA alone in rats tested 9 min after the injection of each amino acid. These findings suggest that taurine may promote a recovery from both akinesia and analgesia, while GABA decreases only the analgesia induced by D-Ala2-Met-enkephalinamide.  相似文献   
187.
The pericentriolar material (PCM) that accumulates around the centriole expands during mitosis and nucleates microtubules. Here, we show the cooperative roles of the centriole and PCM scaffold proteins, pericentrin and CDK5RAP2, in the recruitment of CEP192 to spindle poles during mitosis. Systematic depletion of PCM proteins revealed that CEP192, but not pericentrin and/or CDK5RAP2, was crucial for bipolar spindle assembly in HeLa, RPE1, and A549 cells with centrioles. Upon double depletion of pericentrin and CDK5RAP2, CEP192 that remained at centriole walls was sufficient for bipolar spindle formation. In contrast, through centriole removal, we found that pericentrin and CDK5RAP2 recruited CEP192 at the acentriolar spindle pole and facilitated bipolar spindle formation in mitotic cells with one centrosome. Furthermore, the perturbation of PLK1, a critical kinase for PCM assembly, efficiently suppressed bipolar spindle formation in mitotic cells with one centrosome. Overall, these data suggest that the centriole and PCM scaffold proteins cooperatively recruit CEP192 to spindle poles and facilitate bipolar spindle formation.  相似文献   
188.
p52SHC (SHC) and GRB2 are adaptor proteins involved in the RAS/MAPK (ERK) pathway mediating signals from cell-surface receptors to various cytoplasmic proteins. To further examine their roles in signal transduction, we studied the translocation of fluorescently labeled SHC and GRB2 to the cell surface, caused by the activation of ERBB receptors by heregulin (HRG). We simultaneously evaluated activated ERK translocation to the nucleus. Unexpectedly, the translocation dynamics of SHC were sustained when those of GRB2 were transient. The sustained localization of SHC positively correlated with the sustained nuclear localization of ERK, which became more transient after SHC knockdown. SHC-mediated PI3K activation was required to maintain the sustainability of the ERK translocation regulating MEK but not RAF. In cells overexpressing ERBB1, SHC translocation became transient, and the HRG-induced cell fate shifted from a differentiation to a proliferation bias. Our results indicate that SHC and GRB2 functions are not redundant but that SHC plays the critical role in the temporal regulation of ERK activation.  相似文献   
189.
Morphinan derivatives lacking the 4,5-epoxy ring were synthesized to examine the participation of the 14-OH group, the 3-OMe group, and the aromaticity of the A-ring in the activity and selectivity for the orexin 1 receptor (OX1R). The assay results and the conformational analyses of the 14-dehydrated and 14-H derivatives suggested that the orientations of the 6-amide side chain and the 17-benzenesulfonyl group would play important roles in the activity for OX1R. In the 6β-derivatives, removal of the 3-OMe group and the reduction of the A-ring significantly decreased the activity toward the OX1R, but these changes did not affect the 6α-derivatives. These results indicate that the 3-OMe group and the A-ring would be essential structural moieties for the 6β-derivatives.  相似文献   
190.
Context and objective: Plasma arachidonate (20:4) levels in patients with chronic obstructive pulmonary disease (COPD) were investigated. Methods: Plasma was extracted and free fatty acids (FFAs) were separated using column chromatography and measured by fluorescence. Plasma 20:4 levels and its percentage relative to total FFA levels (%20:4) were measured in COPD (n = 18) and control (n = 20) subjects. Results and conclusions: FFA levels were lower in COPD compared with normals. However, there was a significant increase in %20:4 levels in COPD patients (GOLD stage I/II 0.9 ± 0.4%; GOLD stage III/IV 1.1 ± 0.1%) compared with control subjects (0.6 ± 0.1, p < 0.05). %20:4 is a potential biomarker for COPD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号