全文获取类型
收费全文 | 936篇 |
免费 | 95篇 |
专业分类
1031篇 |
出版年
2024年 | 2篇 |
2023年 | 6篇 |
2022年 | 9篇 |
2021年 | 16篇 |
2020年 | 12篇 |
2019年 | 18篇 |
2018年 | 19篇 |
2017年 | 18篇 |
2016年 | 41篇 |
2015年 | 45篇 |
2014年 | 68篇 |
2013年 | 62篇 |
2012年 | 79篇 |
2011年 | 78篇 |
2010年 | 48篇 |
2009年 | 55篇 |
2008年 | 59篇 |
2007年 | 69篇 |
2006年 | 41篇 |
2005年 | 49篇 |
2004年 | 53篇 |
2003年 | 47篇 |
2002年 | 38篇 |
2001年 | 11篇 |
2000年 | 11篇 |
1999年 | 6篇 |
1998年 | 6篇 |
1997年 | 9篇 |
1996年 | 8篇 |
1995年 | 5篇 |
1994年 | 2篇 |
1993年 | 4篇 |
1992年 | 4篇 |
1991年 | 6篇 |
1990年 | 2篇 |
1989年 | 4篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 3篇 |
1985年 | 3篇 |
1984年 | 3篇 |
1982年 | 1篇 |
1981年 | 3篇 |
1980年 | 2篇 |
1979年 | 2篇 |
1974年 | 1篇 |
1970年 | 1篇 |
排序方式: 共有1031条查询结果,搜索用时 0 毫秒
101.
Noels H van Loo G Hagens S Broeckx V Beyaert R Marynen P Baens M 《The Journal of biological chemistry》2007,282(14):10180-10189
The recurrent translocation t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue (MALT) lymphoma results in the expression of an API2.MALT1 fusion protein that constitutively activates NF-kappaB. The first baculovirus IAP repeat (BIR) domain of API2 and the C terminus of MALT1, which contains its caspase-like domain, are present in all reported fusion variants and interact with TRAF2 and TRAF6, respectively, suggesting their contribution to NF-kappaB signaling by API2.MALT1. Also, the involvement of BCL10 has been suggested via binding to BIR1 of API2 and via its interaction with the immunoglobulin domains of MALT1, present in half of the fusion variants. However, conflicting reports exist concerning their roles in API2.MALT1-induced NF-kappaB signaling. In this report, streptavidin pulldowns of biotinylated API2.MALT1 fusion variants showed that none of the fusion variants interacted with endogenous BCL10; its role in NF-kappaB signaling by API2.MALT1 was further questioned by RNA interference experiments. In contrast, TRAF6 was essential for NF-kappaB activation by all fusion variants, and we identified a novel TRAF6 binding site in the second immunoglobulin domain of MALT1, which enhanced NF-kappaB activation when present in the fusion protein. Furthermore, inclusion of both immunoglobulin domains in API2.MALT1 further enhanced NF-kappaB signaling via intramolecular TRAF6 activation. Finally, binding of TRAF2 to BIR1 contributed to NF-kappaB activation by API2.MALT1, although additional mechanisms involving BIR1-mediated raft association are also important. Taken together, these data reveal distinct mechanisms of NF-kappaB activation by the different API2.MALT1 fusion variants with an essential role for TRAF6. 相似文献
102.
Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level 总被引:1,自引:0,他引:1 下载免费PDF全文
Soeda Y Konings MC Vorst O van Houwelingen AM Stoopen GM Maliepaard CA Kodde J Bino RJ Groot SP van der Geest AH 《Plant physiology》2005,137(1):354-368
During seed maturation and germination, major changes in physiological status, gene expression, and metabolic events take place. Using chlorophyll sorting, osmopriming, and different drying regimes, Brassica oleracea seed lots of different maturity, stress tolerance, and germination behavior were created. Through careful physiological analysis of these seed lots combined with gene expression analysis using a dedicated cDNA microarray, gene expression could be correlated to physiological processes that occurred within the seeds. In addition, gene expression was studied during early stages of seed germination, prior to radicle emergence, since very little detailed information of gene expression during this process is available. During seed maturation expression of many known seed maturation genes, such as late-embryogenesis abundant or storage-compound genes, was high. Notably, a small but distinct subgroup of the maturation genes was found to correlate to seed stress tolerance in osmoprimed and dried seeds. Expression of these genes rapidly declined during priming and/or germination in water. The majority of the genes on the microarray were up-regulated during osmopriming and during germination on water, confirming the hypothesis that during osmopriming, germination-related processes are initiated. Finally, a large group of genes was up-regulated during germination on water, but not during osmopriming. These represent genes that are specific to germination in water. Germination-related gene expression was found to be partially reversible by physiological treatments such as slow drying of osmoprimed seeds. This correlated to the ability of seeds to withstand stress. 相似文献
103.
van den Bogaart G Guzmán JV Mika JT Poolman B 《The Journal of biological chemistry》2008,283(49):33854-33857
The mechanism of pore formation of lytic peptides, such as melittin from bee venom, is thought to involve binding to the membrane surface, followed by insertion at threshold levels of bound peptide. We show that in membranes composed of zwitterionic lipids, i.e. phosphatidylcholine, melittin not only forms pores but also inhibits pore formation. We propose that these two modes of action are the result of two competing reactions: direct insertion into the membrane and binding parallel to the membrane surface. The direct insertion of melittin leads to pore formation, whereas the parallel conformation is inactive and prevents other melittin molecules from inserting, hence preventing pore formation. 相似文献
104.
105.
Ionizing radiation (IR) and consequent induction of DNA double-strand breaks (DSBs) causes activation of the protein ataxia telangiectasia mutated (ATM). Normally, ATM is present as inactive dimers; however, in response to DSBs, the ATM dimer partners cross-phosphorylate each other on serine 1981, and kinase active ATM monomers are subsequently released. We have studied the presence of both nonphosphorylated as well as active serine 1981 phosphorylated ATM (pS1981-ATM) in the mouse testis. In the nonirradiated testis, ATM was present in spermatogonia and spermatocytes until stage VII of the cycle of the seminiferous epithelium, whereas pS1981-ATM was found only to be present in the sex body of pachytene spermatocytes. In response to IR, ATM became activated by pS1981 cross-phosphorylation in spermatogonia and Sertoli cells. Despite the occurrence of endogenous programmed DSBs during the first meiotic prophase and the presence of ATM in both spermatogonia and spermatocytes, pS1981 phosphorylated ATM did not appear in spermatocytes after treatment with IR. These results show that spermatogonial ATM and ATM in the spermatocytes are differentially regulated. In the mitotically dividing spermatogonia, ATM is activated by cross-phosphorylation, whereas during meiosis nonphosphorylated ATM or differently phosphorylated ATM is already active. ATM has been shown to be present at the synapsed axes of the meiotic chromosomes, and in the ATM knock-out mice spermatogenesis stops at pachytene stage IV of the seminiferous epithelium, indicating that indeed nonphosphorylated ATM is functional during meiosis. Additionally, ATM is constitutively phosphorylated in the sex body where its continued presence remains an enigma. 相似文献
106.
Attenuation of cGAS‐STING signaling is mediated by a p62/SQSTM1‐dependent autophagy pathway activated by TBK1 下载免费PDF全文
Thaneas Prabakaran Chiranjeevi Bodda Christian Krapp Bao‐cun Zhang Maria H Christensen Chenglong Sun Line Reinert Yujia Cai Søren B Jensen Morten K Skouboe Jens R Nyengaard Craig B Thompson Robert Jan Lebbink Ganes C Sen Geert van Loo Rikke Nielsen Masaaki Komatsu Lene N Nejsum Martin R Jakobsen Mads Gyrd‐Hansen Søren R Paludan 《The EMBO journal》2018,37(8)
Negative regulation of immune pathways is essential to achieve resolution of immune responses and to avoid excess inflammation. DNA stimulates type I IFN expression through the DNA sensor cGAS, the second messenger cGAMP, and the adaptor molecule STING. Here, we report that STING degradation following activation of the pathway occurs through autophagy and is mediated by p62/SQSTM1, which is phosphorylated by TBK1 to direct ubiquitinated STING to autophagosomes. Degradation of STING was impaired in p62‐deficient cells, which responded with elevated IFN production to foreign DNA and DNA pathogens. In the absence of p62, STING failed to traffic to autophagy‐associated vesicles. Thus, DNA sensing induces the cGAS‐STING pathway to activate TBK1, which phosphorylates IRF3 to induce IFN expression, but also phosphorylates p62 to stimulate STING degradation and attenuation of the response. 相似文献
107.
Hilde Nelissen Dominique Eeckhout Kirin Demuynck Geert Persiau Alan Walton Michiel van Bel Marieke Vervoort Jasper Candaele Jolien De Block Stijn Aesaert Mieke Van Lijsebettens Sofie Goormachtig Klaas Vandepoele Jelle Van Leene Michael Muszynski Kris Gevaert Dirk Inzé Geert De Jaeger 《The Plant cell》2015,27(6):1605-1619
Most molecular processes during plant development occur with a particular spatio-temporal specificity. Thus far, it has remained technically challenging to capture dynamic protein-protein interactions within a growing organ, where the interplay between cell division and cell expansion is instrumental. Here, we combined high-resolution sampling of the growing maize (Zea mays) leaf with tandem affinity purification followed by mass spectrometry. Our results indicate that the growth-regulating SWI/SNF chromatin remodeling complex associated with ANGUSTIFOLIA3 (AN3) was conserved within growing organs and between dicots and monocots. Moreover, we were able to demonstrate the dynamics of the AN3-interacting proteins within the growing leaf, since copurified GROWTH-REGULATING FACTORs (GRFs) varied throughout the growing leaf. Indeed, GRF1, GRF6, GRF7, GRF12, GRF15, and GRF17 were significantly enriched in the division zone of the growing leaf, while GRF4 and GRF10 levels were comparable between division zone and expansion zone in the growing leaf. These dynamics were also reflected at the mRNA and protein levels, indicating tight developmental regulation of the AN3-associated chromatin remodeling complex. In addition, the phenotypes of maize plants overexpressing miRNA396a-resistant GRF1 support a model proposing that distinct associations of the chromatin remodeling complex with specific GRFs tightly regulate the transition between cell division and cell expansion. Together, our data demonstrate that advancing from static to dynamic protein-protein interaction analysis in a growing organ adds insights in how developmental switches are regulated. 相似文献
108.
Zhang X Hurng J Rateri DL Daugherty A Schmid-Schönbein GW Shin HY 《American journal of physiology. Cell physiology》2011,301(2):C451-C460
Continuous exposure of polymorphonuclear leukocytes (PMNLs) to circulatory hemodynamics points to fluid flow as a biophysical regulator of their activity. Specifically, fluid flow-derived shear stresses deactivate leukocytes via actions on the conformational activities of proteins on the cell surface. Because membrane properties affect activities of membrane-bound proteins, we hypothesized that changes in the physical properties of cell membranes influence PMNL sensitivity to fluid shear stress. For this purpose, we modified PMNL membranes and showed that the cellular mechanosensitivity to shear was impaired whether we increased, reduced, or disrupted the organization of cholesterol within the lipid bilayer. Notably, PMNLs with enriched membrane cholesterol exhibited attenuated pseudopod retraction responses to shear that were recovered by select concentrations of benzyl alcohol (a membrane fluidizer). In fact, PMNL responses to shear positively correlated (R(2) = 0.96; P < 0.0001) with cholesterol-related membrane fluidity. Moreover, in low-density lipoprotein receptor-deficient (LDLr(-/-)) mice fed a high-fat diet (a hypercholesterolemia model), PMNL shear-responses correlated (R(2) = 0.5; P < 0.01) with blood concentrations of unesterified (i.e., free) cholesterol. In this regard, the shear-responses of PMNLs gradually diminished and eventually reversed as free cholesterol levels in blood increased during 8 wk of the high-fat diet. Collectively, our results provided evidence that cholesterol is an important component of the PMNL mechanotransducing capacity and elevated membrane cholesterol impairs PMNL shear-responses at least partially through its impact on membrane fluidity. This cholesterol-linked perturbation may contribute to dysregulated PMNL activity (e.g., chronic inflammation) related to hypercholesterolemia and causal for cardiovascular pathologies (e.g., atherosclerosis). 相似文献
109.
110.
Vandingenen A Hens K Baggerman G Macours N Schoofs L De Loof A Huybrechts R 《Peptides》2002,23(10):1853-1863
Vitellogenic ovaries of the gray fleshfly Neobellieria bullata contain a variety of unidentified substances that interact, either as a substrate or as an inhibitor, with angiotensin converting enzyme (ACE). We here report the isolation and characterization of the first ACE interactive compound hereof. This 1312.7 Da peptide with the sequence NKLKPSQWISL, is substrate to both insect and human ACE. It is a novel peptide that shows high sequence similarity to a sequence at the N-terminal part of dipteran yolk polypeptides (YPs). We propose to call it N. bullata ovary-derived ACE interactive factor or Neb-ODAIF. Both insect and human ACE hydrolyze Neb-ODAIF by sequentially cleaving off two C-terminal dipeptides. K(m) values of Neb-ODAIF and Neb-ODAIF(1-9) (NKLKPSQWI) for human somatic ACE (sACE) are 17 and 81 microM, respectively. Additionally, Neb-ODAIF(1-7) (NKLKPSQ) also interacts with sACE (K(m/i)=90 microM). These affinity-constants are in range with those of the physiological ACE substrates and suggest the importance of Neb-ODAIF and its cleavage products in the elucidation of the physiological role of insect ACE. Alternatively, they can serve as lead compounds in the development of new drugs against ACE-related diseases in humans. 相似文献