首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   936篇
  免费   95篇
  1031篇
  2024年   2篇
  2023年   6篇
  2022年   9篇
  2021年   16篇
  2020年   12篇
  2019年   18篇
  2018年   19篇
  2017年   18篇
  2016年   41篇
  2015年   45篇
  2014年   68篇
  2013年   62篇
  2012年   79篇
  2011年   78篇
  2010年   48篇
  2009年   55篇
  2008年   59篇
  2007年   69篇
  2006年   41篇
  2005年   49篇
  2004年   53篇
  2003年   47篇
  2002年   38篇
  2001年   11篇
  2000年   11篇
  1999年   6篇
  1998年   6篇
  1997年   9篇
  1996年   8篇
  1995年   5篇
  1994年   2篇
  1993年   4篇
  1992年   4篇
  1991年   6篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1974年   1篇
  1970年   1篇
排序方式: 共有1031条查询结果,搜索用时 0 毫秒
101.
The recurrent translocation t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue (MALT) lymphoma results in the expression of an API2.MALT1 fusion protein that constitutively activates NF-kappaB. The first baculovirus IAP repeat (BIR) domain of API2 and the C terminus of MALT1, which contains its caspase-like domain, are present in all reported fusion variants and interact with TRAF2 and TRAF6, respectively, suggesting their contribution to NF-kappaB signaling by API2.MALT1. Also, the involvement of BCL10 has been suggested via binding to BIR1 of API2 and via its interaction with the immunoglobulin domains of MALT1, present in half of the fusion variants. However, conflicting reports exist concerning their roles in API2.MALT1-induced NF-kappaB signaling. In this report, streptavidin pulldowns of biotinylated API2.MALT1 fusion variants showed that none of the fusion variants interacted with endogenous BCL10; its role in NF-kappaB signaling by API2.MALT1 was further questioned by RNA interference experiments. In contrast, TRAF6 was essential for NF-kappaB activation by all fusion variants, and we identified a novel TRAF6 binding site in the second immunoglobulin domain of MALT1, which enhanced NF-kappaB activation when present in the fusion protein. Furthermore, inclusion of both immunoglobulin domains in API2.MALT1 further enhanced NF-kappaB signaling via intramolecular TRAF6 activation. Finally, binding of TRAF2 to BIR1 contributed to NF-kappaB activation by API2.MALT1, although additional mechanisms involving BIR1-mediated raft association are also important. Taken together, these data reveal distinct mechanisms of NF-kappaB activation by the different API2.MALT1 fusion variants with an essential role for TRAF6.  相似文献   
102.
During seed maturation and germination, major changes in physiological status, gene expression, and metabolic events take place. Using chlorophyll sorting, osmopriming, and different drying regimes, Brassica oleracea seed lots of different maturity, stress tolerance, and germination behavior were created. Through careful physiological analysis of these seed lots combined with gene expression analysis using a dedicated cDNA microarray, gene expression could be correlated to physiological processes that occurred within the seeds. In addition, gene expression was studied during early stages of seed germination, prior to radicle emergence, since very little detailed information of gene expression during this process is available. During seed maturation expression of many known seed maturation genes, such as late-embryogenesis abundant or storage-compound genes, was high. Notably, a small but distinct subgroup of the maturation genes was found to correlate to seed stress tolerance in osmoprimed and dried seeds. Expression of these genes rapidly declined during priming and/or germination in water. The majority of the genes on the microarray were up-regulated during osmopriming and during germination on water, confirming the hypothesis that during osmopriming, germination-related processes are initiated. Finally, a large group of genes was up-regulated during germination on water, but not during osmopriming. These represent genes that are specific to germination in water. Germination-related gene expression was found to be partially reversible by physiological treatments such as slow drying of osmoprimed seeds. This correlated to the ability of seeds to withstand stress.  相似文献   
103.
The mechanism of pore formation of lytic peptides, such as melittin from bee venom, is thought to involve binding to the membrane surface, followed by insertion at threshold levels of bound peptide. We show that in membranes composed of zwitterionic lipids, i.e. phosphatidylcholine, melittin not only forms pores but also inhibits pore formation. We propose that these two modes of action are the result of two competing reactions: direct insertion into the membrane and binding parallel to the membrane surface. The direct insertion of melittin leads to pore formation, whereas the parallel conformation is inactive and prevents other melittin molecules from inserting, hence preventing pore formation.  相似文献   
104.
105.
Ionizing radiation (IR) and consequent induction of DNA double-strand breaks (DSBs) causes activation of the protein ataxia telangiectasia mutated (ATM). Normally, ATM is present as inactive dimers; however, in response to DSBs, the ATM dimer partners cross-phosphorylate each other on serine 1981, and kinase active ATM monomers are subsequently released. We have studied the presence of both nonphosphorylated as well as active serine 1981 phosphorylated ATM (pS1981-ATM) in the mouse testis. In the nonirradiated testis, ATM was present in spermatogonia and spermatocytes until stage VII of the cycle of the seminiferous epithelium, whereas pS1981-ATM was found only to be present in the sex body of pachytene spermatocytes. In response to IR, ATM became activated by pS1981 cross-phosphorylation in spermatogonia and Sertoli cells. Despite the occurrence of endogenous programmed DSBs during the first meiotic prophase and the presence of ATM in both spermatogonia and spermatocytes, pS1981 phosphorylated ATM did not appear in spermatocytes after treatment with IR. These results show that spermatogonial ATM and ATM in the spermatocytes are differentially regulated. In the mitotically dividing spermatogonia, ATM is activated by cross-phosphorylation, whereas during meiosis nonphosphorylated ATM or differently phosphorylated ATM is already active. ATM has been shown to be present at the synapsed axes of the meiotic chromosomes, and in the ATM knock-out mice spermatogenesis stops at pachytene stage IV of the seminiferous epithelium, indicating that indeed nonphosphorylated ATM is functional during meiosis. Additionally, ATM is constitutively phosphorylated in the sex body where its continued presence remains an enigma.  相似文献   
106.
Negative regulation of immune pathways is essential to achieve resolution of immune responses and to avoid excess inflammation. DNA stimulates type I IFN expression through the DNA sensor cGAS, the second messenger cGAMP, and the adaptor molecule STING. Here, we report that STING degradation following activation of the pathway occurs through autophagy and is mediated by p62/SQSTM1, which is phosphorylated by TBK1 to direct ubiquitinated STING to autophagosomes. Degradation of STING was impaired in p62‐deficient cells, which responded with elevated IFN production to foreign DNA and DNA pathogens. In the absence of p62, STING failed to traffic to autophagy‐associated vesicles. Thus, DNA sensing induces the cGAS‐STING pathway to activate TBK1, which phosphorylates IRF3 to induce IFN expression, but also phosphorylates p62 to stimulate STING degradation and attenuation of the response.  相似文献   
107.
Most molecular processes during plant development occur with a particular spatio-temporal specificity. Thus far, it has remained technically challenging to capture dynamic protein-protein interactions within a growing organ, where the interplay between cell division and cell expansion is instrumental. Here, we combined high-resolution sampling of the growing maize (Zea mays) leaf with tandem affinity purification followed by mass spectrometry. Our results indicate that the growth-regulating SWI/SNF chromatin remodeling complex associated with ANGUSTIFOLIA3 (AN3) was conserved within growing organs and between dicots and monocots. Moreover, we were able to demonstrate the dynamics of the AN3-interacting proteins within the growing leaf, since copurified GROWTH-REGULATING FACTORs (GRFs) varied throughout the growing leaf. Indeed, GRF1, GRF6, GRF7, GRF12, GRF15, and GRF17 were significantly enriched in the division zone of the growing leaf, while GRF4 and GRF10 levels were comparable between division zone and expansion zone in the growing leaf. These dynamics were also reflected at the mRNA and protein levels, indicating tight developmental regulation of the AN3-associated chromatin remodeling complex. In addition, the phenotypes of maize plants overexpressing miRNA396a-resistant GRF1 support a model proposing that distinct associations of the chromatin remodeling complex with specific GRFs tightly regulate the transition between cell division and cell expansion. Together, our data demonstrate that advancing from static to dynamic protein-protein interaction analysis in a growing organ adds insights in how developmental switches are regulated.  相似文献   
108.
Continuous exposure of polymorphonuclear leukocytes (PMNLs) to circulatory hemodynamics points to fluid flow as a biophysical regulator of their activity. Specifically, fluid flow-derived shear stresses deactivate leukocytes via actions on the conformational activities of proteins on the cell surface. Because membrane properties affect activities of membrane-bound proteins, we hypothesized that changes in the physical properties of cell membranes influence PMNL sensitivity to fluid shear stress. For this purpose, we modified PMNL membranes and showed that the cellular mechanosensitivity to shear was impaired whether we increased, reduced, or disrupted the organization of cholesterol within the lipid bilayer. Notably, PMNLs with enriched membrane cholesterol exhibited attenuated pseudopod retraction responses to shear that were recovered by select concentrations of benzyl alcohol (a membrane fluidizer). In fact, PMNL responses to shear positively correlated (R(2) = 0.96; P < 0.0001) with cholesterol-related membrane fluidity. Moreover, in low-density lipoprotein receptor-deficient (LDLr(-/-)) mice fed a high-fat diet (a hypercholesterolemia model), PMNL shear-responses correlated (R(2) = 0.5; P < 0.01) with blood concentrations of unesterified (i.e., free) cholesterol. In this regard, the shear-responses of PMNLs gradually diminished and eventually reversed as free cholesterol levels in blood increased during 8 wk of the high-fat diet. Collectively, our results provided evidence that cholesterol is an important component of the PMNL mechanotransducing capacity and elevated membrane cholesterol impairs PMNL shear-responses at least partially through its impact on membrane fluidity. This cholesterol-linked perturbation may contribute to dysregulated PMNL activity (e.g., chronic inflammation) related to hypercholesterolemia and causal for cardiovascular pathologies (e.g., atherosclerosis).  相似文献   
109.
110.
Vitellogenic ovaries of the gray fleshfly Neobellieria bullata contain a variety of unidentified substances that interact, either as a substrate or as an inhibitor, with angiotensin converting enzyme (ACE). We here report the isolation and characterization of the first ACE interactive compound hereof. This 1312.7 Da peptide with the sequence NKLKPSQWISL, is substrate to both insect and human ACE. It is a novel peptide that shows high sequence similarity to a sequence at the N-terminal part of dipteran yolk polypeptides (YPs). We propose to call it N. bullata ovary-derived ACE interactive factor or Neb-ODAIF. Both insect and human ACE hydrolyze Neb-ODAIF by sequentially cleaving off two C-terminal dipeptides. K(m) values of Neb-ODAIF and Neb-ODAIF(1-9) (NKLKPSQWI) for human somatic ACE (sACE) are 17 and 81 microM, respectively. Additionally, Neb-ODAIF(1-7) (NKLKPSQ) also interacts with sACE (K(m/i)=90 microM). These affinity-constants are in range with those of the physiological ACE substrates and suggest the importance of Neb-ODAIF and its cleavage products in the elucidation of the physiological role of insect ACE. Alternatively, they can serve as lead compounds in the development of new drugs against ACE-related diseases in humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号