首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   820篇
  免费   79篇
  2019年   12篇
  2018年   18篇
  2017年   10篇
  2016年   19篇
  2015年   25篇
  2014年   28篇
  2013年   45篇
  2012年   31篇
  2011年   28篇
  2010年   32篇
  2009年   34篇
  2008年   27篇
  2007年   26篇
  2006年   24篇
  2005年   28篇
  2004年   26篇
  2003年   15篇
  2002年   18篇
  2001年   23篇
  2000年   15篇
  1999年   10篇
  1998年   12篇
  1997年   20篇
  1996年   9篇
  1995年   12篇
  1994年   10篇
  1993年   21篇
  1992年   11篇
  1991年   13篇
  1990年   17篇
  1989年   12篇
  1988年   26篇
  1987年   11篇
  1986年   8篇
  1985年   15篇
  1984年   11篇
  1983年   11篇
  1982年   27篇
  1981年   7篇
  1980年   8篇
  1979年   14篇
  1978年   18篇
  1977年   9篇
  1976年   12篇
  1975年   10篇
  1974年   9篇
  1973年   11篇
  1972年   11篇
  1968年   5篇
  1966年   6篇
排序方式: 共有899条查询结果,搜索用时 250 毫秒
51.
Suppressor of Cytokine Signaling (SOCS)5 is thought to act as a tumour suppressor through negative regulation of JAK/STAT and epidermal growth factor (EGF) signaling. However, the mechanism/s by which SOCS5 acts on these two distinct pathways is unclear. We show for the first time that SOCS5 can interact directly with JAK via a unique, conserved region in its N-terminus, which we have termed the JAK interaction region (JIR). Co-expression of SOCS5 was able to specifically reduce JAK1 and JAK2 (but not JAK3 or TYK2) autophosphorylation and this function required both the conserved JIR and additional sequences within the long SOCS5 N-terminal region. We further demonstrate that SOCS5 can directly inhibit JAK1 kinase activity, although its mechanism of action appears distinct from that of SOCS1 and SOCS3. In addition, we identify phosphoTyr317 in Shc-1 as a high-affinity substrate for the SOCS5-SH2 domain and suggest that SOCS5 may negatively regulate EGF and growth factor-driven Shc-1 signaling by binding to this site. These findings suggest that different domains in SOCS5 contribute to two distinct mechanisms for regulation of cytokine and growth factor signaling.  相似文献   
52.

Background:

Vascular growth is a prerequisite for adipose tissue (AT) development and expansion. Some AT cytokines and hormones have effects on vascular development, like vascular endothelial growth factor (VEGF‐A), angiopoietin (ANG‐1), ANG‐2 and angiopoietin‐like protein‐4 (ANGPTL‐4).

Methods:

In this study, the independent and combined effects of diet‐induced weight loss and exercise on AT gene expression and proteins levels of those angiogenic factors were investigated. Seventy‐nine obese males and females were randomized to: 1. Exercise‐only (EXO; 12‐weeks exercise without diet‐restriction), 2. Hypocaloric diet (DIO; 8‐weeks very low energy diet (VLED) + 4‐weeks weight maintenance diet) and 3. Hypocaloric diet and exercise (DEX; 8‐weeks VLED + 4‐weeks weight maintenance diet combined with exercise throughout the 12 weeks). Blood samples and fat biopsies were taken before and after the intervention.

Results:

Weight loss was 3.5 kg in the EXO group and 12.3 kg in the DIO and DEX groups. VEGF‐A protein was non‐significantly reduced in the weight loss groups. ANG‐1 protein levels were significantly reduced 22‐25% after all three interventions (P < 0.01). The ANG‐1/ANG‐2 ratio was also decreased in all three groups (P < 0.05) by 27‐38%. ANGPTL‐4 was increased in the EXO group (15%, P < 0.05) and 9% (P < 0.05) in the DIO group. VEGF‐A, ANG‐1, and ANGPTL‐4 were all expressed in human AT, but only ANGPTL‐4 was influenced by the interventions.

Conclusions:

Our data show that serum VEGF‐A, ANG‐1, ANG‐2, and ANGPTL‐4 levels are influenced by weight changes, indicating the involvement of these factors in the obese state. Moreover, it was found that weight loss generally was associated with a reduced angiogenic activity in the circulation.  相似文献   
53.
Low‐resistance contact to lightly doped n‐type crystalline silicon (c‐Si) has long been recognized as technologically challenging due to the pervasive Fermi‐level pinning effect. This has hindered the development of certain devices such as n‐type c‐Si solar cells made with partial rear contacts (PRC) directly to the lowly doped c‐Si wafer. Here, a simple and robust process is demonstrated for achieving mΩ cm2 scale contact resistivities on lightly doped n‐type c‐Si via a lithium fluoride/aluminum contact. The realization of this low‐resistance contact enables the fabrication of a first‐of‐its‐kind high‐efficiency n‐type PRC solar cell. The electron contact of this cell is made to less than 1% of the rear surface area, reducing the impact of contact recombination and optical losses, permitting a power conversion efficiency of greater than 20% in the initial proof‐of‐concept stage. The implementation of the LiFx/Al contact mitigates the need for the costly high‐temperature phosphorus diffusion, typically implemented in such a cell design to nullify the issue of Fermi level pinning at the electron contact. The timing of this demonstration is significant, given the ongoing transition from p‐type to n‐type c‐Si solar cell architectures, together with the increased adoption of advanced PRC device structures within the c‐Si photovoltaic industry.  相似文献   
54.
In a complex environment that contains both opportunities and threats, it is important for an organism to flexibly direct attention based on current events and prior plans. The amygdala, the hub of the brain''s emotional system, is involved in forming and signaling affective associations between stimuli and their consequences. The inhibitory thalamic reticular nucleus (TRN) is a hub of the attentional system that gates thalamo-cortical signaling. In the primate brain, a recently discovered pathway from the amygdala sends robust projections to TRN. Here we used computational modeling to demonstrate how the amygdala-TRN pathway, embedded in a wider neural circuit, can mediate selective attention guided by emotions. Our Emotional Gatekeeper model demonstrates how this circuit enables focused top-down, and flexible bottom-up, allocation of attention. The model suggests that the amygdala-TRN projection can serve as a unique mechanism for emotion-guided selection of signals sent to cortex for further processing. This inhibitory selection mechanism can mediate a powerful affective ‘framing’ effect that may lead to biased decision-making in highly charged emotional situations. The model also supports the idea that the amygdala can serve as a relevance detection system. Further, the model demonstrates how abnormal top-down drive and dysregulated local inhibition in the amygdala and in the cortex can contribute to the attentional symptoms that accompany several neuropsychiatric disorders.  相似文献   
55.
56.
The Cape Gannet Morus capensis is one of several seabird species endemic to the Benguela upwelling ecosystem (BUS) but whose population has recently decreased, leading to an unfavourable IUCN Red List assessment. Application of ‘JARA’ (‘Just Another Red-List Assessment,’ a Bayesian state-space tool used for IUCN Red List assessments) to updated information on the areas occupied by Cape Gannets and the nest densities of breeding birds at their six colonies, suggested that the species should be classified as Vulnerable. However, the rate of decrease of Cape Gannets in their most-recent generation exceeded that of the previous generation, primarily as a result of large decreases at Bird Island, Lambert’s Bay, and Malgas Island, off South Africa’s west coast (the western part of their range). Since the 1960s, there has been an ongoing redistribution of the species from northwest to southeast around southern Africa, and ~70% of the population now occurs on the south coast of South Africa, at Bird Island in Algoa Bay, on the eastern border of the BUS. Recruitment rather than adult survival may be limiting the present population; however, information on the seabird’s demographic parameters and mortality in fisheries is lacking for colonies in the northern part of the BUS. Presently, major threats to Cape Gannet include: substantially decreased availability of their preferred prey in the west; heavy mortalities of eggs, chicks and fledglings at and around colonies, inflicted by Cape Fur Seals Arctocephalus pusillus and other seabirds; substantial disturbance at colonies caused by Cape Fur Seals attacking adult gannets ashore; oiling; and disease.  相似文献   
57.
Cargo transport by microtubule‐based motors is essential for cell organisation and function. The Bicaudal‐D (BicD) protein participates in the transport of a subset of cargoes by the minus‐end‐directed motor dynein, although the full extent of its functions is unclear. In this study, we report that in Drosophila zygotic BicD function is only obligatory in the nervous system. Clathrin heavy chain (Chc), a major constituent of coated pits and vesicles, is the most abundant protein co‐precipitated with BicD from head extracts. BicD binds Chc directly and interacts genetically with components of the pathway for clathrin‐mediated membrane trafficking. Directed transport and subcellular localisation of Chc is strongly perturbed in BicD mutant presynaptic boutons. Functional assays show that BicD and dynein are essential for the maintenance of normal levels of neurotransmission specifically during high‐frequency electrical stimulation and that this is associated with a reduced rate of recycling of internalised synaptic membrane. Our results implicate BicD as a new player in clathrin‐associated trafficking processes and show a novel requirement for microtubule‐based motor transport in the synaptic vesicle cycle.  相似文献   
58.
The effects of feeding cholesterol, sitosterol, and lovastatin on cholesterol absorption, biosynthesis, esterification, and LDL receptor function were examined in the rat jejunal mucosa. Cholesterol absorption was measured by the dual-isotope plasma ratio method; the rate-limiting enzyme of cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, was measured as total and expressed enzyme activities (in the absence and presence of a phosphatase inhibitor, NaF, respectively); mucosal total and esterified cholesterol concentrations were determined by gas-liquid chromatography; LDL receptor function was assayed as receptor-mediated binding of (125)I-labeled LDL to mucosal membranes. Feeding 2% sitosterol or 0.04% lovastatin for 1 week significantly (P < 0.01) decreased the amounts of cholesterol absorbed per day (-85% and -63%, respectively). In contrast, feeding 2% cholesterol for 1 week increased the amounts of absorbed cholesterol 27-fold, even though the percent absorption significantly decreased. With all three treatments, there was a coordinate regulation of total HMG-CoA reductase activity and receptor-mediated LDL binding. Cholesterol feeding downregulated both total jejunal HMG-CoA reductase activity (P < 0.05) and receptor-mediated LDL binding (P < 0.01), whereas lovastatin- and sitosterol-supplemented diets significantly upregulated both of these parameters. In the control, cholesterol-fed, and sitosterol-fed animals, about half of the total jejunal HMG-CoA reductase activity was expressed (in functional dephosphorylated form). However, in the lovastatin-treated rats with 4-fold stimulation of HMG-CoA reductase, only 23% of the total enzyme activity was expressed. Changes in total HMG-CoA reductase activity and receptor-mediated LDL binding in all tested groups occurred with no change in total concentrations of mucosal cholesterol, and only cholesterol-fed animals had increased mucosal esterified cholesterol concentrations. Thus, in response to various fluxes of dietary or newly formed cholesterol, HMG-CoA reductase and receptor-mediated LDL binding are coordinately regulated to maintain constant cellular cholesterol concentrations in the jejunum.  相似文献   
59.
A series of (5-(2H)-isoxazolonyl) ureas were developed as nanomolar inhibitors of hormone-sensitive lipase, an enzyme of potential importance in the treatment of diabetes.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号