首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   405篇
  免费   23篇
  2024年   1篇
  2023年   5篇
  2022年   5篇
  2021年   7篇
  2020年   9篇
  2019年   8篇
  2018年   11篇
  2017年   12篇
  2016年   22篇
  2015年   13篇
  2014年   31篇
  2013年   28篇
  2012年   32篇
  2011年   33篇
  2010年   15篇
  2009年   18篇
  2008年   22篇
  2007年   32篇
  2006年   24篇
  2005年   27篇
  2004年   19篇
  2003年   14篇
  2002年   7篇
  2001年   5篇
  2000年   11篇
  1999年   4篇
  1998年   5篇
  1997年   2篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1981年   2篇
排序方式: 共有428条查询结果,搜索用时 15 毫秒
341.
Platelet-derived microparticles (pMP) have been shown to be pro-aggregatory and retain most of their platelet membrane markers. Recent studies have correlated elevated pMP levels with pathogenesis of diabetes mellitus and cardiovascular disease. The pro-aggregatory effect of pMP has been largely attributed to their negatively charged outer surface and activation of factor X by membrane associated Tissue factor (TF). Here we sought to investigate whether, like platelets, protein disulfide isomerase (PDI) is present on the surface of pMP and, if so, to analyze its contribution to platelet hyperaggregability and insulin degradation. Using a fluorescent assay based upon a novel pseudo-substrate of PDI, flow cytometry and immunological techniques, we have demonstrated the presence of PDI on the surface of pMP (termed msPDI) and its ability to influence insulin-mediated Akt phosphorylation (Thr308) in 3T3-L1 fibroblasts. Moreover, pMP are shown to contain catalytically active PDI, capable of both promoting platelet aggregation and disrupting insulin signaling. pMP increased initial rates of aggregation by 4-fold and the pro-aggregatory activity of pMPs could be attenuated with an anti-PDI antibody. The pMP insulin-reductase activity was further attributed to PDI based on the ability of anti-PDI antibodies to block the degradation of insulin, thereby restoring insulin signaling. Plasma pMP counts were also obtained from diabetic (n=10) and non-diabetic individuals (n=10) and found to be elevated in the diabetic state. Detection of increased levels of PDI-containing microparticles in patients with T2D raises the possibility that platelet hypersensitivity and insulin desensitization observed in diabetes can partially be attributed to msPDI activity.  相似文献   
342.
The chromosome number and morphology in eight species of the sections Ptarmica (Mill.) W. D. J. Koch, Anthemoideae (DC.) Heimerl, Arthrolepis Boiss., Santolinoideae (DC.) Heimerl and Achillea of the genus Achillea L. (Asteraceae) were investigated using karyological techniques. Sample plants and seeds of A. biserrata M. Bieb., A. fraasii var. troiana Aschers. & Heimerl, A. multifida (DC.) Boiss., A. brachyphylla Boiss. & Hausskn., A. pseudaleppica Hub.-Mor., A. cretica L., A. latiloba Ledeb. ex Nordm., and A. kotschyi Boiss. subsp. kotschyi) were collected from natural habitats in 2003 and 2004. The chromosome number found in seven species was 2n = 18, while only A. kotschyi had 2n = 36. All chromosomes had median point (M), median region (m), and submedian (sm) centromers. In addition, only A. biserrata species had one subterminal (st) chromosome. An increase in asymmetry was not observed in the karyotypes of the species studied. None of the studied species had any B chromosomes.  相似文献   
343.
Since At2g25630 is an intronless gene with a premature stop codon, its cDNA encoding the predicted mature beta-glucosidase isoenzyme was synthesized from the previously isolated Arabidopsis thaliana genomic DNA. The stop codon was converted to a sense codon by site-directed mutagenesis. The native and mutated cDNA sequences were separately cloned into the vector pPICZalphaB and expressed in Pichia pastoris. Only the cells transformed with mutated cDNA-vector construct produced the active protein. The mutated recombinant beta-glucosidase isoenzyme was chromatographically purified to apparent homogeneity. The molecular mass of the protein is estimated as ca. 60 kD by SDS-PAGE. The pH optimum of activity is 5.6, and it is fairly stable in the pH range of 5.0-8.5. The purified recombinant beta-glucosidase is effectively active on para-/ortho-nitrophenyl-beta-D-glucopyranosides (p-/o-NPG) and 4-methylumbelliferyl-beta-D-glucopyranoside (4-MUG) with K(m) values of 1.9, 2.1, 0.78 mM and k(cat) values of 114, 106, 327 nkat/mg, respectively. It also exhibits different levels of activity against para-/ortho-nitrophenyl-beta-D-fucopyranosides (p-/o-NPF), amygdalin, prunasin, cellobiose, gentiobiose, and salicin. The enzyme is competitively inhibited by gluconolactone and p-nitrophenyl-1-thio-beta-D-glucopyranoside with p-NPG, o-NPG, and 4-MUG as substrates. The enzyme is found to be very tolerant to glucose inhibition. The catalytic role of nucleophilic glutamic acid in the motif YITENG of beta-glucosidases and mutated recombinant enzyme is discussed.  相似文献   
344.
Kandilci HB  Gumusel B  Lippton H 《Peptides》2008,29(8):1321-1328
The present study was designed to investigate the effects of rat intermedin/adrenomedullin2 (rIMD), an agonist for calcitonin-like calcitonin receptors (CRLR), on the isolated rat pulmonary arterial rings (PA). When PA were precontracted with 9,11-dideoxy-11alpha,9alpha-epoxymethanoprostaglandin F2alpha (U-46619), rIMD (10(-11) to 10(-6)M) induced concentration-dependent relaxation. The pulmonary vasorelaxant response (PVR) to rIMD in PA were completely inhibited by endothelium removal, NG-nitro-L-arginine-methyl-ester (L-NAME), l-N5-(1-iminoethyl)-ornithine hydrochloride (l-NIO) or 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). The PVR to rIMD were also significantly attenuated by a protein kinase inhibitor, Rp-8-bromo-beta-phenyl-1,N2-ethenoguanosine 3':5'-cyclic monophosphorothioate sodium salt hydrate (Rp-8-Br-PETcGMPs), cholera toxin and abolished by tetraethylammonium chloride (TEA), iberiotoxin and precontraction with KCl. The relaxant effect was not affected by 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22536), (9S,10S,12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy 1H diindolo [1,2,3fg:3',2',1'kl] pyrrolo [3,4-i] [1,6] benzodiazocine-10-carboxylic acid hexyl ester (KT5720), meclofenamate, glybenclamide or apamin. In parallel with SQ22536 and KT5720 results rolipram pretreatment did not alter the rIMD-induced PVR. The PVR to rIMD was potentialized either in the presence of zaprinast or sildenafil. Since the PVR to rIMD was also significantly reduced by rCGRP(8-37) and hADM(22-52) and rIMD(17-47), the present data suggest that rIMD produces PVR by acting in an indiscriminant manner on functional, and possibly different, endothelial CRLR. In conclusion, rIMD stimulates endothelial CRLR are coupled to release of nitric oxide, activation of guanylate cyclases, and promotion of hyperpolarization through large conductance calcium-activated K(+) channels in rat main PA.  相似文献   
345.
Hexose-6-phosphate dehydrogenase (H6PD) is the initial component of a pentose phosphate pathway inside the endoplasmic reticulum (ER) that generates NADPH for ER enzymes. In liver H6PD is required for the 11-oxoreductase activity of 11beta-hydroxysteroid dehydrogenase type 1, which converts inactive 11-oxo-glucocorticoids to their active 11-hydroxyl counterparts; consequently, H6PD null mice are relatively insensitive to glucocorticoids, exhibiting fasting hypoglycemia, increased insulin sensitivity despite elevated circulating levels of corticosterone, and increased basal and insulin-stimulated glucose uptake in muscles normally enriched in type II (fast) fibers, which have increased glycogen content. Here, we show that H6PD null mice develop a severe skeletal myopathy characterized by switching of type II to type I (slow) fibers. Running wheel activity and electrically stimulated force generation in isolated skeletal muscle are both markedly reduced. Affected muscles have normal sarcomeric structure at the electron microscopy level but contain large intrafibrillar membranous vacuoles and abnormal triads indicative of defects in structure and function of the sarcoplasmic reticulum (SR). SR proteins involved in calcium metabolism, including the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA), calreticulin, and calsequestrin, show dysregulated expression. Microarray analysis and real-time PCR demonstrate overexpression of genes encoding proteins in the unfolded protein response pathway. We propose that the absence of H6PD induces a progressive myopathy by altering the SR redox state, thereby impairing protein folding and activating the unfolded protein response pathway. These studies thus define a novel metabolic pathway that links ER stress to skeletal muscle integrity and function.  相似文献   
346.
Little computational or experimental information is available on site-specific hydroxyl attack probabilities to DNA. In this study, an atomistic stochastic model of OH radical reactions with DNA was developed to compute relative OH attack probabilities at individual deoxyribose hydrogen atoms. A model of the self-complementary decamer duplex d(CCAACGTTGG) was created including Na(+) counter ions and the water molecules of the first hydration layer. Additionally, a method for accounting for steric hindrance from nonreacting atoms was implemented. The model was then used to calculate OH attack probabilities at the various C-H sites of the sugar moiety. Results from this computational model show that OH radicals exhibit preferential attack at different deoxyribose hydrogens, as suggested by their corresponding percentage solvent-accessible surface areas. The percentage OH attack probabilities for the deoxyribose hydrogens [1H(5')+2H(5'), H(4'), H(3'), 1H(2')+2H(2'), H(1')] were calculated as approximately 54.6%, 20.6%, 15.0%, 8.5% and 1.3%, respectively, averaged across the sequence. These results are in good agreement with the latest experimental site-specific DNA strand break data of Balasubramanian et al. [Proc. Natl. Acad. Sci. USA 95, 9738-9742 (1998)]. The data from this stochastic model suggest that steric hindrance from nonreacting atoms significantly influences site-specific hydroxyl radical attack probabilities in DNA. A number of previous DNA damage models have been based on the assumption that C(4') is the preferred site, or perhaps the only site, for OH-mediated DNA damage. However, the results of the present study are in good agreement the experimental results of Balasubramanian et al. in which OH radicals exhibit preferential initial attack at sugar hydrogen atoms in the order 1H(5')+2H(5') > H(4') > H(3') > 1H(2')+2H(2') > H(1').  相似文献   
347.
348.
349.
350.
In this study, we investigated the effect of astaxanthin (Ast) and aluminum (Al) on the erythrocyte glucose‐6‐phosphate dehydrogenase (G6PD) and 6‐phosphogluconate dehydrogenase (6PGD) enzymes activities in vivo and on G6PD enzyme in vitro in rats. For in vitro studies, G6PD enzyme was purified from rat erythrocyte by using 2′,5′‐ADP‐Sepharose 4B affinity gel. The effects of Ast and Al3+ ion were investigated on the purified enzyme. It was determined that Ast increased the enzyme activity, whereas Al3+ inhibited the enzyme activity noncompetitively (IC50 values; 0.679 mM, Ki values 1.32 mM). For in vivo studies, the rats were divided into the groups: control (Cont.), Al, Ast, and Al + Ast. The last three groups were compared with the control group. In Al group, a significant degree of inhibition was observed in the activity of G6PD and 6PGD enzymes when compared with the control group (P < 0.05), whereas there was an increase in the activities of G6PD and 6PGD enzymes in Ast and Al + Ast groups (P < 0.05).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号