首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3262篇
  免费   287篇
  国内免费   4篇
  2023年   28篇
  2022年   41篇
  2021年   82篇
  2020年   32篇
  2019年   42篇
  2018年   88篇
  2017年   82篇
  2016年   90篇
  2015年   151篇
  2014年   157篇
  2013年   214篇
  2012年   272篇
  2011年   233篇
  2010年   146篇
  2009年   121篇
  2008年   180篇
  2007年   156篇
  2006年   196篇
  2005年   131篇
  2004年   152篇
  2003年   135篇
  2002年   168篇
  2001年   71篇
  2000年   71篇
  1999年   52篇
  1998年   35篇
  1997年   27篇
  1996年   16篇
  1995年   17篇
  1994年   16篇
  1993年   17篇
  1992年   27篇
  1991年   26篇
  1990年   19篇
  1989年   22篇
  1988年   23篇
  1987年   20篇
  1986年   19篇
  1985年   24篇
  1984年   16篇
  1983年   10篇
  1982年   12篇
  1981年   13篇
  1980年   13篇
  1979年   12篇
  1977年   6篇
  1976年   10篇
  1975年   10篇
  1974年   11篇
  1973年   7篇
排序方式: 共有3553条查询结果,搜索用时 125 毫秒
991.
The structure-based design and synthesis of a series of novel biphenyl sulfonamide carboxylic acids as potent MMP-13 inhibitors with selectivity over MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-14, Aggrecanase 1, and TACE are described.  相似文献   
992.
A series of 5-methoxy- and 5-hydroxy-6-fluoro-1,8-naphthyridone-3-carboxylic acid derivatives were prepared and evaluated for cell-free bacterial protein synthesis inhibition and whole cell antibacterial activity. When compared to the analogous 5-hydrogen compounds, the presence of the 5-OH group negatively affects biochemical potency. However, a tolerance of the 5-methoxy group is indicated. Only moderate whole cell antibacterial activity is seen, but this could be due to poor cellular penetration. Because only a few 7-position variants were made for this study, further investigation into this novel series combining a broader range of 7-amino derivatives with these 5-position modifications is warranted.  相似文献   
993.
The function of root border cells (RBC) during aluminum (Al) stress and the involvement of oxalate oxidase, peroxidase and H2O2 generation in Al toxicity were studied in barley roots. Our results suggest that RBC effectively protect the barley root tip from Al relative to the situation in roots cultivated in hydroponics where RBC are not sustained in the area surrounding the root tip. The removal of RBC from Al-treated roots increased root growth inhibition, Al and Evans blue uptake, inhibition of RBC production, the level of dead RBC, peroxidase and oxalate oxidase activity and the production of H2O2. Our results suggest that even though RBC actively produce active oxygen species during Al stress, their role in the protection of root tips against Al toxicity is to chelate Al in their dead cell body.  相似文献   
994.
Garai J  Lóránd T  Molnár V 《Life sciences》2005,77(12):1375-1380
Macrophage migration inhibitory factor (MIF), a long known proinflammatory cytokine exhibits perplexing enzymatic activities: tautomeric conversion of D-dopachrome and phenylpyruvate. Whether these catalytic activities bear functional relevance regarding MIF's multifaceted roles is under current scrutiny. Nevertheless, intense search has already started for pharmacological agents that target MIF's tautomerase activity. We have probed several antiinflammatory compounds against keto--enol (enolase) and enol--keto (ketonase) conversion of phenylpyruvate by MIF with spectrophotometry. We have identified acidic CH groups as markers of inhibitor potency toward MIF phenylpyruvate tautomerase. Among simple model molecules with strong acidic CH groups we found acetylacetone the best inhibitor particularly against the ketonase activity. Ketones of physiological importance - ketone bodies - also feature acidic CH groups and have been reported to exert certain anti-inflammatory effects. In this paper we report that ketone bodies inhibit preferentially the ketonase activity of MIF in vitro. Future studies should address whether such an interaction might operate in vivo and delineate its possible relevance concerning cytokine and non-cytokine roles of MIF.  相似文献   
995.
Cohesive ends of 16-3, a temperate phage of Rhizobium meliloti 41, have been identified as 10-base-long, 3'-protruding complementary G/C-rich sequences. terS and terL encode the two subunits of 16-3 terminase. Significant homologies were detected among the terminase subunits of phage 16-3 and other phages from various ecosystems.  相似文献   
996.
FTY720 is a novel immunomodulatory agent that inhibits lymphocyte trafficking and prevents allograft rejection. FTY720 is phosphorylated in vivo, and the phosphorylated drug acts as agonist for a family of G protein-coupled receptors that recognize sphingosine 1-phosphate. Evidence suggests that FTY720-phosphate-induced activation of S1P1 is responsible for its mechanism of action. FTY720 was rationally designed by modification of myriocin, a naturally occurring sphingoid base analog that causes immunosuppression by interrupting sphingolipid metabolism. In this study, we examined interactions between FTY720, FTY720-phosphate, and sphingosine-1-phosphate lyase, the enzyme responsible for irreversible sphingosine 1-phosphate degradation. FTY720-phosphate was stable in the presence of active sphingosine-1-phosphate lyase, demonstrating that the lyase does not contribute to FTY720 catabolism. Conversely, FTY720 inhibited sphingosine-1-phosphate lyase activity in vitro. Treatment of mice with FTY720 inhibited tissue sphingosine-1-phosphate lyase activity within 12 h, whereas lyase gene and protein expression were not significantly affected. Tissue sphingosine 1-phosphate levels remained stable or increased throughout treatment. These studies raise the possibility that disruption of sphingosine 1-phosphate metabolism may account for some effects of FTY720 on immune function and that sphingosine-1-phosphate lyase may be a potential target for immunomodulatory therapy.  相似文献   
997.
998.
In this study, we have investigated the use of plasmid DNA (pDNA) vaccination to elicit Th2 effector cell function in an Ag-specific manner and in turn prevent insulin-dependent diabetes mellitus (IDDM) in nonobese diabetic (NOD) mice. pDNA recombinants were engineered encoding a secreted fusion protein consisting of a fragment of glutamic acid decarboxylase 65 (GAD65) linked to IgGFc, and IL-4. Intramuscular injection of pDNA encoding GAD65-IgGFc and IL-4 effectively prevented diabetes in NOD mice treated at early or late preclinical stages of IDDM. This protection was GAD65-specific since NOD mice immunized with pDNA encoding hen egg lysozyme-IgGFc and IL-4 continued to develop diabetes. Furthermore, disease prevention correlated with suppression of insulitis and induction of GAD65-specific regulatory Th2 cells. Importantly, GAD65-specific immune deviation was dependent on pDNA-encoded IL-4. In fact, GAD65-specific Th1 cell reactivity was significantly enhanced in animals immunized with pDNA encoding only GAD65-IgGFc. Finally, NOD.IL4(null) mice treated with pDNA encoding GAD65-IgGFc and IL-4 continued to develop diabetes, indicating that endogenous IL-4 was also required for disease prevention. These results demonstrate that pDNA vaccination is an effective strategy to elicit beta cell-specific Th2 regulatory cell function for the purpose of preventing IDDM even at a late stage of disease development.  相似文献   
999.
Genetic studies in Saccharomyces cerevisiae identified two genes, STE24 and RCE1, involved in cleaving the three carboxyl-terminal amino acids from isoprenylated proteins that terminate with a CAAX sequence motif. Ste24p cleaves the carboxyl-terminal "-AAX" from the yeast mating pheromone a-factor, whereas Rce1p cleaves the -AAX from both a-factor and Ras2p. Ste24p also cleaves the amino terminus of a-factor. The mouse genome contains orthologues for both yeast RCE1 and STE24. We previously demonstrated, with a gene-knockout experiment, that mouse Rce1 is essential for development and that Rce1 is entirely responsible for the carboxyl-terminal proteolytic processing of the mouse Ras proteins. In this study, we cloned mouse Zmpste24, the orthologue for yeast STE24 and showed that it could promote a-factor production when expressed in yeast. Then, to assess the importance of Zmpste24 in development, we generated Zmpste24-deficient mice. Unlike the Rce1 knockout mice, Zmpste24-deficient mice survived development and were fertile. Since no natural substrates for mammalian Zmpste24 have been identified, yeast a-factor was used as a surrogate substrate to investigate the biochemical activities in membranes from the cells and tissues of Zmpste24-deficient mice. We demonstrate that Zmpste24-deficient mouse membranes, like Ste24p-deficient yeast membranes, have diminished CAAX proteolytic activity and lack the ability to cleave the amino terminus of the a-factor precursor. Thus, both enzymatic activities of yeast Ste24p are conserved in mouse Zmpste24, but these enzymatic activities are not essential for mouse development or for fertility.  相似文献   
1000.
Saccharomyces cerevisiae Ste24p is a multispanning membrane protein implicated in the CAAX proteolysis step that occurs during biogenesis of the prenylated a-factor mating pheromone. Whether Ste24p acts directly as a CAAX protease or indirectly to activate a downstream protease has not yet been established. In this study, we demonstrate that purified, detergent-solubilized Ste24p directly mediates CAAX proteolysis in a zinc-dependent manner. We also show that Ste24p mediates a separate proteolytic step, the first NH(2)-terminal cleavage in a-factor maturation. These results establish that Ste24p functions both as a bona fide COOH-terminal CAAX protease and as an a-factor NH(2)-terminal protease. Importantly, this study is the first to directly demonstrate that a eukaryotic multispanning membrane protein can possess intrinsic proteolytic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号