首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   698篇
  免费   67篇
  国内免费   2篇
  767篇
  2024年   1篇
  2023年   17篇
  2022年   19篇
  2021年   24篇
  2020年   11篇
  2019年   14篇
  2018年   21篇
  2017年   25篇
  2016年   18篇
  2015年   29篇
  2014年   37篇
  2013年   46篇
  2012年   47篇
  2011年   50篇
  2010年   38篇
  2009年   36篇
  2008年   39篇
  2007年   24篇
  2006年   40篇
  2005年   28篇
  2004年   16篇
  2003年   16篇
  2002年   21篇
  2001年   14篇
  2000年   22篇
  1999年   11篇
  1998年   12篇
  1997年   10篇
  1996年   14篇
  1995年   4篇
  1994年   7篇
  1993年   9篇
  1992年   5篇
  1991年   3篇
  1990年   6篇
  1988年   7篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1969年   2篇
排序方式: 共有767条查询结果,搜索用时 0 毫秒
81.
Background aimsMesenchymal stem/stromal cells (MSCs) are of interest for the treatment of graft-versus-host disease, autoimmune diseases, osteoarthritis and neurological and cardiovascular diseases. Increasing numbers of clinical trials emphasize the need for standardized manufacturing of these cells. However, many challenges related to diverse isolation and expansion protocols and differences in cell tissue sources exist. As a result, the cell products used in numerous trials vary greatly in characteristics and potency.MethodsThe authors have established a standardized culture platform using xeno- and serum-free commercial media for expansion of MSCs derived from umbilical cord (UC), bone marrow and adipose-derived (AD) and examined their functional characteristics.ResultsMSCs from the tested sources stably expanded in vitro and retained their biomarker expression and normal karyotype at early and later passages and after cryopreservation. MSCs were capable of colony formation and successfully differentiated into osteogenic, adipogenic and chondrogenic lineages. Pilot expansion of UC-MSCs and AD-MSCs to clinical scale revealed that the cells met the required quality standard for therapeutic applications.ConclusionsThe authors’ data suggest that xeno- and serum-free culture conditions are suitable for large-scale expansion and enable comparative study of MSCs of different origins. This is of importance for therapeutic purposes, especially because of the numerous variations in pre-clinical and clinical protocols for MSC-based products.  相似文献   
82.

Purpose

To investigate the effect of ageing on the recovery of ocular blood flow, intravitreal oxygen tension and retinal function during and after intraocular pressure (IOP) elevation.

Methods

Long Evans rats (3- and 14-month-old) underwent acute stepwise IOP elevation from 10 to 120 mmHg (5 mmHg steps each 3 minutes). IOP was then returned to baseline and recovery was monitored for 2 hours. Photopic electroretinograms (ERG) were recorded at each IOP step during stress and at each minute during recovery. Ocular blood flow and vitreal oxygen tension (pO2) were assayed continuously and simultaneously using a combined laser Doppler flow meter (LDF) and an oxygen sensitive fibre-optic probe, respectively. The combined sensor was placed in the vitreous chamber, proximal to the retina. Data were binned into 3 minute intervals during stress and 1 min intervals during recovery. Recovery data was described using a bi-logistic function.

Results

Rats of both ages showed similar susceptibility to IOP elevation, with pO2 showing a closer relationship to ERG than LDF. During recovery, both ages showed a distinctive two-phased recovery for all three measures with the exception of the LDF in 3-month-old rats, which showed only 1 phase. In all animals, LDF recovered fastest (<1 minute), followed by pO2 (<10 minute) and ERG (>1 hour). 14-month-old rats showed surprisingly faster and greater LDF recovery compared to the younger group, with similar levels of pO2 recovery. However, the ERG in these middle-aged animals did not fully recover after two hours, despite showing no difference in susceptibility to IOP during stress compared to the young group.

Conclusions

Young and middle-aged eyes showed similar susceptibility to IOP elevation in terms of pO2, LDF and ERG. Despite this lack of difference during stress, older eyes did not completely recover function, suggesting a more subtle age-related susceptibility to IOP.  相似文献   
83.
In water of varying ion content, the gills and kidney of fishes contribute significantly to the maintenance of salt and water balance. However, little is known about the molecular architecture of the tight junction (TJ) complex and the regulation of paracellular permeability characteristics in these tissues. In the current studies, puffer fish (Tetraodon biocellatus) were acclimated to freshwater (FW), seawater (SW) or ion-poor freshwater (IPW) conditions. Following acclimation, alterations in systemic endpoints of hydromineral status were examined in conjunction with changes in gill and kidney epithelia morphology/morphometrics, as well as claudin TJ protein mRNA abundance. T. biocellatus were able to maintain endpoints of hydromineral status within relatively tight limits across the broad range of water ion content examined. Both gill and kidney tissue exhibited substantial alterations in morphology as well as claudin TJ protein mRNA abundance. These responses were particularly pronounced when comparing fish acclimated to SW versus those acclimated to IPW. TEM observations of IPW-acclimated fish gills revealed the presence of cells that exhibited the typical characteristics of gill mitochondria-rich cells (e.g. voluminous, Na+-K+-ATPase-immunoreactive, exposed to the external environment at the apical surface), but were not mitochondria-rich. To our knowledge, this type of cell has not previously been described in hyperosmoregulating fish gills. Furthermore, modifications in the morphometrics and claudin mRNA abundance of kidney tissue support the notion that spatial alterations in claudin TJ proteins along the nephron of fishes will likely play an important role in the regulation of salt and water balance in these organisms.  相似文献   
84.
Oxidative stress can affect in vitro GFP expression through its control of the gene silencing effect of the liposome prepared by 1,2-dioleoyl-3-trimethyl-ammonium propane (DOTAP). The gene silencing effect of cationic DOTAP liposome in in vitro GFP expression, especially focusing on its translation process, and the effects of oxidative stress on its silencing effect were investigated. GFP expression, initiated by mRNA, was found to be thoroughly inhibited in the presence of DOTAP liposome at concentration of more than 2.5 mM, though its inhibitory effect was reduced in the presence of hydrogen peroxide. The analyses of (i) the interaction of mRNA with DOTAP, (ii) the chemical structure of DOTAP, and (iii) the membrane fluidity of DOTAP liposome imply the possible role of gene expression by the liposome membrane and stress conditions.  相似文献   
85.
86.
Jatropha curcas L. is a small, woody tree of the Euphorbiaceae family. This plant can grow on marginal land in the tropical and subtropical regions and produces seeds containing up to 30% oil. Several Asian countries have selected Jatropha for large scale planting as a biodiesel feedstock. Nevertheless, Jatropha also possesses several undesirable traits that may limit its wide adoption. An improved understanding of plant development and the regulation of fatty acid (FA) and triacylglyceride biosynthesis in Jatropha is particularly facilitative for the development of elite crops. Here, we show that a tobacco rattle virus (TRV) vector can trigger virus-induced gene silencing (VIGS) in Jatropha. Our optimized method produced robust and reliable gene silencing in plants agroinoculated with recombinant TRV harbouring Jatropha gene sequences. We used VIGS to investigate possible functions of 13 Jatropha genes of several functional categories, including FA biosynthesis, developmental regulation and toxin biosynthesis, etc. Based on the effects of VIGS on the FA composition of newly emerged leaves, we determined the function of several genes implicated in FA biosynthesis. Moreover, VIGS was able to discriminate independent functions of related gene family members. Our results show that VIGS can be used for high-throughput screening of Jatropha genes whose functions can be assayed in leaves.  相似文献   
87.
88.

Salinity is an important factor in the physiological regulation of algae; however, its influence on the genomic responses in toxic dinoflagellates is insufficiently understood. In the present study, we evaluated the effect of salinity stress on the physiology, photosynthesis, and molecular responses of the toxic dinoflagellate Alexandrium pacificum (group IV). When exposed cells to different salinities of 20–40 psu, we detected the lowest cell density (3.25?×?103 cells mL?1) and highest cell size (30.6 µm) at 20 psu. Photosynthesis efficiency considerably decreased at 20 and 40 psu compared to the control (33 psu). Quantitative real-time polymerase chain reaction revealed that psbA, psbD, and atpC expression levels were significantly downregulated under conditions of salinity stress for 72 h. In contrast, the expression levels of antioxidant genes MnSOD and GPx were greatly upregulated at 20 psu (13.2- and 15.2-fold changes at 6 h; 8.8- and 8.3-fold changes at 24 h, respectively). The expression levels of other antioxidant genes, CuZnSOD, GST, and APx, increased steadily over time under salinity stress. Such conditions increased the relative levels of reactive oxygen species by 2.2-fold in 6 h and 2.4-fold in 24 h at 20 psu. These results suggest that low salinity may cause cellular oxidative stress, leading to a decrease in photosynthesis and affecting specific antioxidant systems in toxic dinoflagellates.

  相似文献   
89.
90.
pH control is critical in bioreactor operations, typically realized through a two-sided control loop, where CO2 sparging and base addition are used in bicarbonate-buffered media. Though a common approach, base addition could compromise culture performance due to the potential impact from pH excursions and osmolality increase in large-scale bioreactors. In this study, the feasibility of utilizing control of sparge gas composition as part of the pH control loop was assessed in Chinese hamster ovary (CHO) fed-batch cultures. Fine pH control was evaluated in multiple processes at different setpoints in small-scale ambr®250 bioreactors. Desired culture pH setpoints were successfully maintained via air sparge feedback control. As part of the pH control loop, air sparging was increased to improve CO2 removal automatically, hence increase culture pH, and vice versa. The effectiveness of this pH control strategy was seamlessly transferred from ambr®250 to 200 L scale, demonstrating scalability of the proposed methodology. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2743, 2019  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号