首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   575篇
  免费   54篇
  629篇
  2023年   1篇
  2022年   5篇
  2021年   14篇
  2020年   7篇
  2019年   11篇
  2018年   8篇
  2017年   16篇
  2016年   15篇
  2015年   21篇
  2014年   38篇
  2013年   44篇
  2012年   48篇
  2011年   45篇
  2010年   35篇
  2009年   19篇
  2008年   26篇
  2007年   37篇
  2006年   29篇
  2005年   24篇
  2004年   21篇
  2003年   26篇
  2002年   22篇
  2001年   17篇
  2000年   18篇
  1999年   8篇
  1998年   5篇
  1997年   2篇
  1996年   5篇
  1995年   7篇
  1994年   4篇
  1993年   6篇
  1992年   3篇
  1991年   5篇
  1990年   10篇
  1989年   1篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1970年   1篇
  1968年   1篇
  1959年   3篇
排序方式: 共有629条查询结果,搜索用时 15 毫秒
71.
72.

Purpose

Inhibition of angiogenesis has shown clinical success in patients with cancer. Thus, imaging approaches that allow for the identification of angiogenic tumors and the detection of response to anti-angiogenic treatment are of high clinical relevance.

Experimental Design

We established an in vivo magnetic resonance imaging (MRI) approach that allows us to simultaneously image tumor microvessel density and tumor vessel size in a NSCLC model in mice.

Results

Using microvessel density imaging we demonstrated an increase in microvessel density within 8 days after tumor implantation, while tumor vessel size decreased indicating a switch from macro- to microvessels during tumor growth. Moreover, we could monitor in vivo inhibition of angiogenesis induced by the angiogenesis inhibitor PTK787, resulting in a decrease of microvessel density and a slight increase in tumor vessel size.

Conclusions

We present an in vivo imaging approach that allows us to monitor both tumor microvessel density and tumor vessel size in the tumor. Moreover, this approach enables us to assess, early-on, treatment effects on tumor microvessel density as well as on tumor vessel size. Thus, this imaging-based strategy of validating anti-angiogenic treatment effects has high potential in applications to preclinical and clinical trials.  相似文献   
73.
Background aimsThe number of circulating endothelial progenitor cells (EPC) depends on cytokine release and is also associated with cardiovascular risk factors. During cardiopulmonary bypass (CPB) the endothelium is the first organ to be affected by mechanical and immunologic stimuli. We hypothesized that the magnitude of EPC mobilization by CPB correlates with the pre-operative cardiovascular morbidity profile.MethodsEPC were quantified in blood samples from 30 patients who underwent cardiac surgery by magnetic bead isolation and fluorescence-activated cell sorting (FACS) analysis, based on concomitant expression of CD34, CD133 and CD309. Patients were divided into two groups based on the European System for Cardiac Operative Risk Evaluation (EuroSCORE): low risk (LR) and high risk (HR). Ten healthy volunteers served as controls. Samples were obtained before the start of CPB and at 1 and 24 h post-operatively. Plasma samples were collected for determination of release levels of cytokines and growth factors.ResultsAll CPB patients showed a significantly reduced basal number of EPC compared with healthy individuals (LR 5.60 ± 0.39/mL, HR 3.89 ± 0.34/ mL, versus control 0.807 ± 0.82/mL, P = 0.012 versus LR, P < 0.001 versus HR). CPB induced EPC release that peaked 1 h after surgery (pre-operative 4.79 ± 0.32/mL, 1 h 57.49 ± 5.31/mL, 24 h 6.67 ± 1.05/mL, P < 0.001 pre-operative versus 1 h, P < 0.001 pre-operative versus 24 h) and was associated with the duration of CPB. However, EPC release was significantly attenuated in HR patients (33.09 ± 3.58/mL versus 81.89 ± 4.36/mL at 1 h after CPB, P < 0.0001) and inversely correlated with the pre-operative EuroSCORE. Serum granulocyte–colony-stimulating factor (G-CSF), stem cell factor (SCF) and vascular endothelial growth factor (VEGF) levels increased throughout the observation period and were also correlated with the EPC count.ConclusionsCardiovascular risk factors influence the mobilization of EPC from the bone marrow after stimulation by CPB. This could be secondary to impaired mobilization or the result of increased EPC turnover, and may have implications for future cell therapy strategies in cardiac surgical patients.  相似文献   
74.
Certain substances may be hazardous to ecosystems. To be able to preserve the structures and functions of ecosystems, knowledge is required to qualify and quantify such hazards. To this end, biotests are indispensable tools. For the development and/or choice of biotests, special attention has to be drawn to conflicts between scientific demands and practical constraints. From a purely scientific point of view, experiments should be designed to maximise the ecological relevance of the obtained results. However, this often collides with the limited resources (budget, time, manpower) available. Furthermore, societal issues (e.g. animal welfare) have to be taken into account. Thus, it is necessary to develop a scientifically sound testing approach that avoids unnecessary animal testing, keeps the costs low, and can be performed within a short timeframe. The different perspectives of ecology, environmental toxicology, and environmental chemistry should be integrated into a balanced ecotoxicological approach. Accordingly, we propose a dynamic testing strategy, which is adapted to the substance (or substance group) in question and its mode(s) of action.  相似文献   
75.
Immediate early gene X1 (IEX-1) represents a stress response gene involved in growth control and modulation of apoptosis. Here, we report a detailed analysis of IEX-1 with respect to its intracellular localization. By means of confocal laser scanning microscopy, a green fluorescent protein-IEX-1 fusion protein transfected into HeLa cells, as well as endogenous IEX-1, could be detected in distinct subnuclear structures. This particular subnuclear localization of IEX-1 was not observed with a green fluorescent protein-IEX-1 fusion protein lacking a putative nuclear localization sequence, along with a decreased effect on apoptosis. Double immunofluorescence staining revealed a partial co-localization of endogenous promyelocytic leukemia protein (PML) and IEX-1 in these subnuclear structures. Nuclear localization of IEX-1 is also enhanced upon treatment of cells with leptomycin B, an inhibitor of the nuclear exporter CRM1. These observations indicate that IEX-1 is specifically shuttled to and from the nucleus. Overexpression experiments using PML isoforms III and IV revealed distinct intranuclear interaction of IEX-1 and PML. Coprecipitation experiments showed physical interaction between IEX-1 and PML. The close structural relation of IEX-1-containing nuclear subdomains and PML nuclear bodies suggests a function of IEX-1 related to the multiple functions of these unique subnuclear regions, particularly during stress response and growth control.  相似文献   
76.
The isothiocyanates sulforaphane and PEITC (beta-phenethyl isothiocyanate) as well as the indoles indole-3-carbinol and its condensation product 3,3'-diindolylmethane are known to inhibit cancer cell proliferation and induce apoptosis. In this study, we compared the cell growth inhibitory potential of the four compounds on the p53 wild type human colon cancer cell line 40-16 (p53(+/+)) and its p53 knockout derivative 379.2 (p53(-/-)) (both derived from HCT116). Using sulforhodamin B staining to assess cell proliferation, we found that the isothiocyanates were strongly cytotoxic, whereas the indoles inhibited cell growth in a cytostatic manner. Half-maximal inhibitory concentrations of all four compounds in both cell lines ranged from 5-15 microM after 24, 48 and 72 h of treatment. Apoptosis induction was analyzed by immunoblotting of poly(ADP-ribose)polymerase (PARP). Treatment with sulforaphane (15 microM), PEITC (10 microM), indole-3-carbinol (10 microM) and 3,3'-diindolylmethane (10 microM) induced PARP cleavage after 24 and 48 h in both 40-16 and the 379.2 cell lines, suggestive of a p53-independent mechanism of apoptosis induction. In cultured 40-16 cells, activation of caspase-9 and -7 detected by Western blotting indicated involvement of the mitochondrial pathway. We detected time- and concentration-dependent changes in protein expression of anti-apoptotic Bcl-x(L) as well as pro-apoptotic Bax and Bak proteins. Of note is that for sulforaphane only, ratios of pro- to anti-apoptotic Bcl-2 family protein levels directly correlated with apoptosis induction measured by PARP cleavage. Taken together, we demonstrated that the glucosinolate breakdown products investigated in this study have distinct profiles of cell growth inhibition, potential to induce p53-independent apoptosis and to modulate Bcl-2 family protein expression in human colon cancer cell lines.  相似文献   
77.

Background  

Although it is not difficult for state-of-the-art gene finders to identify coding regions in prokaryotic genomes, exact prediction of the corresponding translation initiation sites (TIS) is still a challenging problem. Recently a number of post-processing tools have been proposed for improving the annotation of prokaryotic TIS. However, inherent difficulties of these approaches arise from the considerable variation of TIS characteristics across different species. Therefore prior assumptions about the properties of prokaryotic gene starts may cause suboptimal predictions for newly sequenced genomes with TIS signals differing from those of well-investigated genomes.  相似文献   
78.
Current models for the intracellular transport of Tau protein suggest motor protein-dependent co-transport with microtubule fragments and diffusion of Tau in the cytoplasm, whereas Tau is believed to be stationary while bound to microtubules and in equilibrium with free diffusion in the cytosol. Observations that members of the microtubule-dependent kinesin family show Brownian motion along microtubules led us to hypothesize that diffusion along microtubules could also be relevant in the case of Tau. We used single-molecule total internal reflection fluorescence microscopy to probe for diffusion of individual fluorescently labeled Tau molecules along microtubules. This allowed us to avoid the problem that microtubule-dependent diffusion could be masked by excess of labeled Tau in solution that might occur in in vivo overexpression experiments. We found that approximately half of the individually detected Tau molecules moved bidirectionally along microtubules over distances up to several micrometers. Diffusion parameters such as diffusion coefficient, interaction time, and scanned microtubule length did not change with Tau concentration. Tau binding and diffusion along the microtubule lattice, however, were sensitive to ionic strength and pH and drastically reduced upon enzymatic removal of the negatively charged C termini of tubulin. We propose one-dimensional Tau diffusion guided by the microtubule lattice as one possible additional mechanism for Tau distribution. By such one-dimensional microtubule lattice diffusion, Tau could be guided to both microtubule ends, i.e. the sites where Tau is needed during microtubule polymerization, independently of directed motor-dependent transport. This could be important in conditions where active transport along microtubules might be compromised.  相似文献   
79.
Cell division control by the Chromosomal Passenger Complex   总被引:1,自引:0,他引:1  
The Chromosomal Passenger Complex (CPC) consisting of Aurora B kinase, INCENP, Survivin and Borealin, is essential for genomic stability by controlling multiple processes during both nuclear and cytoplasmic division. In mitosis it ensures accurate segregation of the duplicated chromosomes by regulating the mitotic checkpoint, destabilizing incorrectly attached spindle microtubules and by promoting the axial shortening of chromosomal arms in anaphase. During cytokinesis the CPC most likely prevents chromosome damage by imposing an abscission delay when a chromosome bridge connects the two daughter cells. Moreover, by controlling proper cytoplasmic division, the CPC averts tetraploidization. This review describes recent insights on how the CPC is capable of conducting its various functions in the dividing cell to ensure chromosomal stability.  相似文献   
80.
Tocopherol is believed to be the most potent naturally occurring chain-breaking antioxidant. Hence, its refined phenolic head group chromanol may represent an optimum evolutionary solution to the problem of free-radical chain reactions in the lipid bilayer. To test the universal validity of this assumption beyond phenolic head groups, we have synthesized aromatic amine analogues of vitamin E and trolox with otherwise closely matching physicochemical properties: NH-toc and NH-trox. We have found that NH-toc and NH-trox were significantly more potent free radical scavengers, lipid peroxidation inhibitors and cytoprotective agents than their phenolic templates, tocopherol and trolox. In a chemical sense, thus, the chromanol head group does not constitute a global optimum for the design of chain-breaking antioxidants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号