首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   371篇
  免费   42篇
  413篇
  2022年   3篇
  2021年   5篇
  2018年   4篇
  2017年   6篇
  2016年   4篇
  2015年   17篇
  2014年   17篇
  2013年   19篇
  2012年   26篇
  2011年   17篇
  2010年   10篇
  2009年   19篇
  2008年   15篇
  2007年   23篇
  2006年   22篇
  2005年   15篇
  2004年   8篇
  2003年   10篇
  2002年   8篇
  2001年   16篇
  2000年   15篇
  1999年   12篇
  1998年   12篇
  1997年   5篇
  1996年   4篇
  1995年   5篇
  1994年   5篇
  1993年   6篇
  1992年   9篇
  1991年   6篇
  1990年   11篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1979年   2篇
  1976年   3篇
  1973年   4篇
  1972年   2篇
  1971年   5篇
  1970年   2篇
  1967年   2篇
  1961年   1篇
  1959年   2篇
  1921年   1篇
排序方式: 共有413条查询结果,搜索用时 15 毫秒
321.

Background

Chronic obstructive pulmonary disease (COPD) is accompanied by pulmonary inflammation and associated with extra-pulmonary manifestations, including skeletal muscle atrophy. Glycogen synthase kinase-3 (GSK-3) has been implicated in the regulation of muscle protein- and myonuclear turnover; two crucial processes that determine muscle mass. In the present study we investigated the effect of the selective GSK-3 inhibitor SB216763 on muscle mass in a guinea pig model of lipopolysaccharide (LPS)-induced pulmonary inflammation-associated muscle atrophy.

Methods

Guinea pigs were pretreated with either intranasally instilled SB216763 or corresponding vehicle prior to each LPS/saline challenge twice weekly. Pulmonary inflammation was confirmed and indices of muscle mass were determined after 12 weeks. Additionally, cultured skeletal muscle cells were incubated with tumor necrosis factor α (TNF-α) or glucocorticoids (GCs) to model the systemic effects of pulmonary inflammation on myogenesis, in the presence or absence of GSK-3 inhibitors.

Results

Repeated LPS instillation induced muscle atrophy based on muscle weight and muscle fiber cross sectional area. Intriguingly, GSK-3 inhibition using SB216763 prevented the LPS-induced muscle mass decreases and myofiber atrophy. Indices of protein turnover signaling were unaltered in guinea pig muscle. Interestingly, inhibition of myogenesis of cultured muscle cells by TNF-α or synthetic GCs was prevented by GSK-3 inhibitors.

Conclusions

In a guinea pig model of LPS-induced pulmonary inflammation, GSK-3 inhibition prevents skeletal muscle atrophy without affecting pulmonary inflammation. Resistance to inflammation- or GC-induced impairment of myogenic differentiation, imposed by GSK-3 inhibition, suggests that sustained myogenesis may contribute to muscle mass maintenance despite persistent pulmonary inflammation. Collectively, these results warrant further exploration of GSK-3 as a potential novel drug target to prevent or reverse muscle wasting in COPD.  相似文献   
322.
323.
Structure and polymorphism of human telomere-associated DNA   总被引:69,自引:0,他引:69  
We have analyzed the DNA sequences associated with four different human telomeres. Two are members of distinct repeated sequence families which are located mainly but not exclusively at telomeres. Two are unique in the genome, one deriving from the long arm telomere of chromosome 7 and the other from the pseudoautosomal telomere. One telomere-associated repeated sequence has a polymorphic distribution among the chromosome ends, being present at a different combination of ends in different individuals. These data thus identify a new source of human genetic variation and indicate that the canonical features of the organization of telomere-associated DNA are widely conserved in evolution.  相似文献   
324.
Notch signalling is critical for haemopoietic stem cell (HSC) self-renewal and survival. The role of Notch signalling has been reported recently in chronic myeloid leukaemia (CML) – a stem cell disease characterized by BCR-ABL tyrosine kinase activation. Therefore, we studied the relationship between BCR-ABL and Notch signalling and assessed the expression patterns of Notch and its downstream target Hes1 in CD34+ stem and progenitor cells from chronic-phase CML patients and bone marrow (BM) from normal subjects (NBM). We found significant upregulation (p<0.05) of Notch1, Notch2 and Hes1 on the most primitive CD34+Thy+ subset of CML CD34+ cells suggesting that active Notch signalling in CML primitive progenitors. In addition, Notch1 was also expressed in distinct lymphoid and myeloid progenitors within the CD34+ population of primary CML cells. To further delineate the possible role and interactions of Notch with BCR-ABL in CD34+ primary cells from chronic-phase CML, we used P-crkl detection as a surrogate assay of BCR-ABL tyrosine kinase activity. Our data revealed that Imatinib (IM) induced BCR-ABL inhibition results in significant (p<0.05) upregulation of Notch activity, assessed by Hes1 expression. Similarly, inhibition of Notch leads to hyperactivation of BCR-ABL. This antagonistic relationship between Notch and BCR-ABL signalling was confirmed in K562 and ALL-SIL cell lines. In K562, we further validated this antagonistic relationship by inhibiting histone deacetylase (HDAC) - an effector pathway of Hes1, using valproic acid (VPA) - a HDAC inhibitor. Finally, we also confirmed the potential antagonism between Notch and BCR/ABL in In Vivo, using publically available GSE-database, by analysing gene expression profile of paired samples from chronic-phase CML patients pre- and post-Imatinib therapy. Thus, we have demonstrated an antagonistic relationship between Notch and BCR-ABL in CML. A combined inhibition of Notch and BCR-ABL may therefore provide superior clinical response over tyrosine-kinase inhibitor monotherapy by targeting both quiescent leukaemic stem cells and differentiated leukaemic cells and hence must be explored.  相似文献   
325.
C-Myc is a nuclear phosphoprotein whose normal cellular function has not yet been clearly defined. Studies with this protein have always been constrained by the difficulty of obtaining full-length c-Myc in an active form, whatever the expression system used. We report here experimental conditions optimized to increase the solubility and the purification of c-Myc in a baculovirus expression system. Such conditions allow the production of both soluble and active fulllength c-Myc. Interestingly, soluble c-Myc is found associated with a 500-kDa high-molecular-mass complex comparable to that found in human and Xenopus laevis embryos, and which may be required for its function in vivo.  相似文献   
326.
327.
A new simple, rapid and sensitive reversed‐phase liquid chromatographic method was developed and validated for the simultaneous determination of methocarbamol (MET) and aspirin (ASP) in their combined dosage form. The separation of these compounds was achieved within 6.0 min on a CLC Shim‐pack C8 column (250 × 4.6 mm, 5 µm particle size) using isocratic mobile phase consisting of acetonitrile and 0.02 M dihydrogenphosphate buffer (30:70, v/v) at pH = 5.0. The analysis was performed at a flow rate of 1.0 mL/min with fluorescence detection at 277/313 nm for MET and 298/410 nm for ASP using real‐time programming. The selectivity, linearity of calibration, accuracy, inter‐ and intra‐day precision and recovery were examined as parts of the method validation. The concentration–response relationship was linear over concentration ranges of 0.02‐0.20 and 0.02‐0.40 µg/mL for MET and ASP, respectively, with a limit of detection of 6 and 32 ng/mL for MET and ASP, respectively. The proposed method was successfully applied for the analysis of both MET and ASP in prepared tablets with average recoveries of 99.88 ± 0.65% for MET and 100.44 ± 0.78% for ASP. The results were favourably compared to those obtained by a reference method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
328.
Canonical mechanisms of protein evolution include the duplication and diversification of pre-existing folds through genetic alterations that include point mutations, insertions, deletions, and copy number amplifications, as well as post-translational modifications that modify processes such as folding efficiency and cellular localization. Following a survey of the human mutation database, we have identified an additional mechanism that we term “structural capacitance,” which results in the de novo generation of microstructure in previously disordered regions. We suggest that the potential for structural capacitance confers select proteins with the capacity to evolve over rapid timescales, facilitating saltatory evolution as opposed to gradualistic canonical Darwinian mechanisms. Our results implicate the elements of protein microstructure generated by this distinct mechanism in the pathogenesis of a wide variety of human diseases. The benefits of rapidly furnishing the potential for evolutionary change conferred by structural capacitance are consequently counterbalanced by this accompanying risk. The phenomenon of structural capacitance has implications ranging from the ancestral diversification of protein folds to the engineering of synthetic proteins with enhanced evolvability.  相似文献   
329.
In this report we describe the analysis of an advanced intercross line (AIL) to confirm the quantitative trait locus (QTL) regions found for fatness traits in a previous study. QTL analysis was performed on chromosomes 1, 3, 4, 15, 18, and 27. The AIL was created by random intercrossing in each generation from generation 2 (G2) onwards until generation 9 (G9) was reached. QTL for abdominal fat weight (AFW) and/or percentage abdominal fat (AF%) on chromosomes 1, 3 and 27 were confirmed in the G9 population. In addition, evidence for QTL for body weight at the age of 5 (BW5) and 7 (BW7) weeks and for the percentage of intramuscular fat (IF%) were found on chromosomes 1, 3, 15, and 27. Significant evidence for QTL was detected on chromosome 1 for BW5 and BW7. Suggestive evidence was found on chromosome 1 for AFW, AF% and IF%, on chromosome 15 for BW5, and on chromosome 27 for AF% and IF%. Furthermore, evidence on the chromosome-wise level was found on chromosome 3 for AFW, AF%, and BW7 and on chromosome 27 for BW5. For chromosomes 4 and 18, test statistics did not exceed the significance threshold.  相似文献   
330.
The human serine protease inhibitor (serpin) α-1 antitrypsin (α1-AT) protects tissues from proteases of inflammatory cells. The most common disease-causing mutation in α1-AT is the Z-mutation (E342K) that results in an increased propensity of α1-AT to polymerize in the ER of hepatocytes, leading to a lack of secretion into the circulation. The structural consequences of this mutation, however, remain elusive. We report a comparative molecular dynamics investigation of the native states of wild-type and Z α1-AT, revealing a striking contrast between their structures and dynamics in the breach region at the top of β-sheet A, which is closed in the wild-type simulations but open in the Z form. Our findings are consistent with experimental observations, notably the increased solvent exposure of buried residues in the breach region in Z, as well as polymerization via domain swapping, whereby the reactive center loop is rapidly inserted into an open A-sheet before proper folding of the C-terminal β-strands, allowing C-terminal domain swapping with a neighboring molecule. Taken together, our experimental and simulation data imply that mutations at residue 342 that either stabilize an open form of the top of β-sheet A or increase the local flexibility in this region, may favor polymerization and hence aggregation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号