首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   12篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   5篇
  2011年   3篇
  2009年   3篇
  2008年   4篇
  2007年   3篇
  2006年   5篇
  2005年   11篇
  2004年   4篇
  2003年   5篇
  2002年   5篇
  2001年   4篇
  2000年   6篇
  1999年   6篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   6篇
  1991年   7篇
  1990年   3篇
  1989年   9篇
  1988年   3篇
  1987年   7篇
  1986年   6篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1976年   5篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
  1971年   5篇
  1970年   1篇
  1969年   1篇
排序方式: 共有161条查询结果,搜索用时 15 毫秒
91.
92.
93.
The key enzyme of the fermentation of glutamate by Acidaminococcus fermentans, 2-hydroxyglutarylcoenzyme A dehydratase, catalyzes the reversible syn-elimination of water from (R)-2-hydroxyglutaryl-coenzyme A, resulting in (E)-glutaconylcoenzyme A. The dehydratase system consists of two oxygen-sensitive protein components, the activator (HgdC) and the actual dehydratase (HgdAB). Previous biochemical and spectroscopic studies revealed that the reduced [4Fe–4S]+ cluster containing activator transfers one electron to the dehydratase driven by ATP hydrolysis, which activates the enzyme. With a tenfold excess of titanium(III) citrate at pH 8.0 the activator can be further reduced, yielding about 50% of a superreduced [4Fe–4S]0 cluster in the all-ferrous state. This is inferred from the appearance of a new Mössbauer spectrum with parameters δ = 0.65 mm/s and ΔE Q = 1.51–2.19 mm/s at 140 K, which are typical of Fe(II)S4 sites. Parallel-mode electron paramagnetic resonance (EPR) spectroscopy performed at temperatures between 3 and 20 K showed two sharp signals at g = 16 and 12, indicating an integer-spin system. The X-band EPR spectra and magnetic Mössbauer spectra could be consistently simulated by adopting a total spin S t = 4 for the all-ferrous cluster with weak zero-field splitting parameters D = ?0.66 cm?1 and E/D = 0.17. The superreduced cluster has apparent spectroscopic similarities with the corresponding [4Fe–4S]0 cluster described for the nitrogenase Fe-protein, but in detail their properties differ. While the all-ferrous Fe-protein is capable of transferring electrons to the MoFe-protein for dinitrogen reduction, a similar physiological role is elusive for the superreduced activator. This finding supports our model that only one-electron transfer steps are involved in dehydratase catalysis. Nevertheless we discuss a common basic mechanism of the two diverse systems, which are so far the only described examples of the all-ferrous [4Fe–4S]0 cluster found in biology.  相似文献   
94.
Anaerobic bacteria from the orders Clostridiales and Fusobacteriales are able to ferment glutamate by at least five different pathways, most of which contain enzymes with radicals in their catalytic pathways. The first two pathways proceed to ammonia, acetate and pyruvate via the coenzyme B12-dependent glutamate mutase, which catalyses the re-arrangement of the linear carbon skeleton to that of the branched-chain amino acid (2S,3S)-3-methylaspartate. Pyruvate then disproportionates either to CO2 and butyrate or to CO2, acetate and propionate. In the third pathway, glutamate again is converted to ammonia, CO2, acetate and butyrate. The key intermediate is (R)-2-hydroxyglutaryl-CoA, which is dehydrated to glutaconyl-CoA, followed by decarboxylation to crotonyl-CoA. The unusual dehydratase, containing an iron-sulfur cluster, is activated by an ATP-dependent one-electron reduction. The remaining two pathways require more then one organism for the complete catabolism of glutamate to short chain fatty acids. Decarboxylation of glutamate leads to 4-aminobutyrate, which is fermented by a second organism via the fourth pathway to acetate and butyrate, again mediated by an unusual dehydratase which catalyses the reversible dehydration of 4-hydroxybutyryl-CoA to crotonyl-CoA. The fifth pathway is the only one without decarboxylation, since the gamma-carboxylate of glutamate is reduced to the amino group of delta-aminovalerate, which then is fermented to acetate, propionate and valerate. The pathway involves the oxidative dehydration of 5-hydroxyvaleryl-CoA to 2,4-pentadienoyl-CoA followed by reduction to 3-pentenoyl-CoA and isomerisation to 2-pentenoyl-CoA.  相似文献   
95.
Hans M  Bill E  Cirpus I  Pierik AJ  Hetzel M  Alber D  Buckel W 《Biochemistry》2002,41(18):5873-5882
2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans catalyzes the chemical difficult elimination of water from (R)-2-hydroxyglutaryl-CoA to glutaconyl-CoA. The enzyme consists of two oxygen-sensitive protein components, the homodimeric activator (A) with one [4Fe-4S]1+/2+ cluster and the heterodimeric dehydratase (D) with one nonreducible [4Fe-4S]2+ cluster and reduced riboflavin 5'-monophosphate (FMNH2). For activation, ATP, Mg2+, and a reduced flavodoxin (16 kDa) purified from A. fermentans are required. The [4Fe-4S](1+/2+) cluster of component A is exposed to the solvent since it is accessible to iron chelators. Upon exchange of the bound ADP by ATP, the chelation rate is 8-fold enhanced, indicating a large conformational change. Oxidized component A exhibits ATPase activity of 6 s(-1), which is completely abolished upon reduction by one electron. UV-visible spectroscopy revealed a spontaneous one-electron transfer from flavodoxin hydroquinone (E(0)' = -430 mV) to oxidized component A, whereby the [4Fe-4S]2+ cluster of component A became reduced. Combined kinetic, EPR, and M?ssbauer spectrocopic investigations exhibited an ATP-dependent oxidation of component A by component D. Whereas the [4Fe-4S]2+ cluster of component D remained in the oxidized state, a new EPR signal became visible attributed to a d1-metal species, probably Mo(V). Metal analysis with neutron activation and atomic absorption spectroscopy gave 0.07-0.2 Mo per component D. In summary, the data suggest that in the presence of ATP one electron is transferred from flavodoxin hydroquinone via the [4Fe-4S]1+/2+ cluster of component A to Mo(VI) of component D, which is thereby reduced to Mo(V). The latter may supply the electron necessary for transient charge reversal in the unusual dehydration.  相似文献   
96.
Aspergillus nidulans was used as a model organism to investigate the fungal propionate metabolism and the mechanism of growth inhibition by propionate. The fungus is able to grow slowly on propionate as sole carbon and energy source. Propionate is oxidized to pyruvate via the methylcitrate cycle. The key enzyme methylcitrate synthase was purified and the corresponding gene mcsA, which contains two introns, was cloned, sequenced and overexpressed in A. nidulans. The derived amino acid sequence of the enzyme shows more than 50% identity to those of most eukaryotic citrate synthases, but only 14% identity to the sequence of the recently detected bacterial methylcitrate synthase from Escherichia coli. A mcsA deletion strain was unable to grow on propionate. The inhibitory growth effect of propionate on glucose medium was enhanced in this strain, which led to the assumption that trapping of the available CoA as propionyl-CoA and/or the accumulating propionyl-CoA itself interferes with other biosynthetic pathways such as fatty acid and polyketide syntheses. In the wild-type strain, however, the predominant inhibitor may be methylcitrate. Propionate (100 mM) not only impaired hyphal growth of A. nidulans but also synthesis of the green polyketide-derived pigment of the conidia, whereas in the mutant pigmentation was abolished with 20 mM propionate.  相似文献   
97.
Clostridium aminobutyricum ferments 4-aminobutyrate via succinic semialdehyde, 4-hydroxybutyrate, 4-hydroxybutyryl-CoA and crotonyl-CoA to acetate and butyrate. The genes coding for the enzymes that catalyse the interconversion of these intermediates are arranged in the order abfD (4-hydroxybutyryl-CoA dehydratase), abfT (4-hydroxybutyrate CoA-transferase), and abfH (NAD-dependent 4-hydroxybutyrate dehydrogenase). The genes abfD and abfT were cloned, sequenced and expressed as active enzymes in Escherichia coli. Hence the insertion of the [4Fe-4S]clusters and FAD into the dehydratase required no additional specific protein from C. aminobutyricum. The amino acid sequences of the dehydratase and the CoA-transferase revealed close relationships to proteins deduced from the genomes of Clostridium difficile, Porphyromonas gingivalis and Archaeoglobus fulgidus. In addition the N-terminal part of the dehydratase is related to those of a family of FAD-containing mono-oxygenases from bacteria. The putative assignment in the databank of Cat2 (OrfZ) from Clostridium kluyveri as 4-hydroxybutyrate CoA-transferase, which is thought to be involved in the reductive pathway from succinate to butyrate, was confirmed by sequence comparison with AbfT (57% identity). Furthermore, an acetyl-CoA:4-hydroxybutyrate CoA-transferase activity could be detected in cell-free extracts of C. kluyveri. In contrast to glutaconate CoA-transferase from Acidaminococcus fermentans, mutation studies suggested that the glutamate residue of the motive EXG, which is conserved in many homologues of AbfT, does not form a CoA-ester during catalysis.  相似文献   
98.
The anaerobic metabolism of crotonate, benzoate, and cyclohexane carboxylate by Syntrophus aciditrophicus grown syntrophically with Methanospirillum hungatei provides a model to study syntrophic cooperation. Recent studies revealed that S. aciditrophicus contains Re-citrate synthase but lacks the common Si-citrate synthase. To establish whether the Re-citrate synthase is involved in glutamate synthesis via the oxidative branch of the Krebs cycle, we have used [1-13C]acetate and [1-14C]acetate as well as [13C]bicarbonate as additional carbon sources during axenic growth of S. aciditrophicus on crotonate. Our analyses showed that labeled carbons were detected in at least 14 amino acids, indicating the global utilization of acetate and bicarbonate. The labeling patterns of alanine and aspartate verified that pyruvate and oxaloacetate were synthesized by consecutive carboxylations of acetyl coenzyme A (acetyl-CoA). The isotopomer profile and 13C nuclear magnetic resonance (NMR) spectroscopy of the obtained [13C]glutamate, as well as decarboxylation of [14C]glutamate, revealed that this amino acid was synthesized by two pathways. Unexpectedly, only the minor route used Re-citrate synthase (30 to 40%), whereas the majority of glutamate was synthesized via the reductive carboxylation of succinate. This symmetrical intermediate could have been formed from two acetates via hydration of crotonyl-CoA to 4-hydroxybutyryl-CoA. 4-Hydroxybutyrate was detected in the medium of S. aciditrophicus when grown on crotonate, but an active hydratase could not be measured in cell extracts, and the annotated 4-hydroxybutyryl-CoA dehydratase (SYN_02445) lacks key amino acids needed to catalyze the hydration of crotonyl-CoA. Besides Clostridium kluyveri, this study reveals the second example of a microbial species to employ two pathways for glutamate synthesis.  相似文献   
99.
U H Weidle  P Buckel  F Grummt 《Gene》1988,73(2):427-437
We have constructed a new expression vector for mammalian cells. The vector contains a truncated tk gene for amplification under selective conditions, a sequence putatively supporting the replication of plasmid DNA in eukaryotic cells (murine autonomously replicating sequence) and an expression cassette for the cDNA to be studied. As a model cDNA we have used that of human tissue-type plasminogen activator (t-PA). Analysis of Hirt supernatants and chromosomal DNA from L cells, prepared six weeks after isolation of the clones indicated a 50- to 500-fold amplification of the expression construct in the cells. Concomitantly, the expression of t-PA was dramatically increased. Our data are consistent with episomal persistence of the expression construct, with a head-to-tail mode of integration into the mouse genome and with coexistence of both episomal plasmids and head-to-tail integrates. In tk-deficient cell lines other then L-cells, such as mouse mastocytoma or rat hepatoma cells, a strong selection against the persistence of the expression construct was noted. After long-term propagation of the L-cells under selective conditions the expression of the indicator gene continually decreases, but finally a constant plateau level of expression is established. Expression could be restored to the original level by blocking more efficiently the de novo synthesis of nucleosides.  相似文献   
100.
BACKGROUND: Glutamate mutase (Glm) equilibrates (S)-glutamate with (2S,3S)-3-methylaspartate. Catalysis proceeds with the homolytic cleavage of the organometallic bond of the cofactor to yield a 5'-desoxyadenosyl radical. This radical then abstracts a hydrogen atom from the protein-bound substrate to initiate the rearrangement reaction. Glm from Clostridium cochlearium is a heterotetrameric molecule consisting of two sigma and two epsilon polypeptide chains. RESULTS: We have determined the crystal structures of inactive recombinant Glm reconstituted with either cyanocobalamin or methylcobalamin. The molecule shows close similarity to the structure of methylmalonyl CoA mutase (MCM), despite poor sequence similarity between its catalytic epsilon subunit and the corresponding TIM-barrel domain of MCM. Each of the two independent B12 cofactor molecules is associated with a substrate-binding site, which was found to be occupied by a (2S,3S)-tartrate ion. A 1:1 mixture of cofactors with cobalt in oxidation states II and III was observed in both crystal structures of inactive Glm. CONCLUSIONS: The long axial cobalt-nitrogen bond first observed in the structure of MCM appears to result from a contribution of the species without upper ligand. The tight binding of the tartrate ion conforms to the requirements of tight control of the reactive intermediates and suggests how the enzyme might use the substrate-binding energy to initiate cleavage of the cobalt-carbon bond. The cofactor does not appear to have a participating role during the radical rearrangement reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号