首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   29篇
  2021年   5篇
  2020年   2篇
  2018年   4篇
  2017年   5篇
  2016年   5篇
  2015年   9篇
  2014年   7篇
  2013年   8篇
  2012年   11篇
  2011年   11篇
  2010年   12篇
  2009年   8篇
  2008年   8篇
  2007年   12篇
  2006年   10篇
  2005年   11篇
  2004年   22篇
  2003年   11篇
  2002年   15篇
  2001年   17篇
  2000年   12篇
  1999年   17篇
  1998年   5篇
  1997年   4篇
  1996年   5篇
  1995年   4篇
  1993年   2篇
  1992年   7篇
  1991年   8篇
  1988年   5篇
  1985年   2篇
  1984年   2篇
  1979年   3篇
  1978年   2篇
  1976年   2篇
  1961年   2篇
  1957年   3篇
  1956年   2篇
  1955年   2篇
  1954年   2篇
  1953年   1篇
  1952年   1篇
  1949年   1篇
  1942年   1篇
  1940年   2篇
  1937年   2篇
  1935年   2篇
  1933年   1篇
  1926年   1篇
  1925年   1篇
排序方式: 共有310条查询结果,搜索用时 766 毫秒
11.
12.
The mechanical properties of living cells are essential for many processes. They are defined by the cytoskeleton, a composite network of protein fibers. Thus, the precise control of its architecture is of paramount importance. Our knowledge about the molecular and physical mechanisms defining the network structure remains scarce, especially for the intermediate filament cytoskeleton. Here, we investigate the effect of small heat shock proteins on the keratin 8/18 intermediate filament cytoskeleton using a well-controlled model system of reconstituted keratin networks. We demonstrate that Hsp27 severely alters the structure of such networks by changing their assembly dynamics. Furthermore, the C-terminal tail domain of keratin 8 is shown to be essential for this effect. Combining results from fluorescence and electron microscopy with data from analytical ultracentrifugation reveals the crucial role of kinetic trapping in keratin network formation.  相似文献   
13.
14.
Small heat shock proteins (sHsps) are ubiquitous molecular chaperones that prevent the unspecific aggregation of proteins. So far, Hsp26 was the only unambiguously identified member of the sHsp family in Saccharomyces cerevisiae. We show here that the sHsp system in the cytosol of S. cerevisiae consists of two proteins, Hsp26 and Hsp42. Hsp42 forms large dynamic oligomers with a barrel-like structure. In contrast to Hsp26, which functions predominantly at heat shock temperatures, Hsp42 is active as a chaperone under all conditions tested in vivo and in vitro. Under heat shock conditions, both Hsp42 and Hsp26 suppress the aggregation of one-third of the cytosolic proteins. This subset is about 90% overlapping for Hsp42 and Hsp26. The sHsp substrates belong to different biochemical pathways. This indicates a general protective function of sHsps for proteome stability in S. cerevisiae. Consistent with this observation, sHsp knockout strains show phenotypical defects. Taken together, our results define Hsp42 as an important player for protein homeostasis at physiological and under stress conditions.  相似文献   
15.
Uptake of external sulfate from the environment and use of internal vacuolar sulfate pools are two important aspects of the acquisition of sulfur for metabolism. In this study, we demonstrated that the vacuolar SULTR4-type sulfate transporter facilitates the efflux of sulfate from the vacuoles and plays critical roles in optimizing the internal distribution of sulfate in Arabidopsis thaliana. SULTR4;1-green fluorescent protein (GFP) and SULTR4;2-GFP fusion proteins were expressed under the control of their own promoters in transgenic Arabidopsis. The fusion proteins were accumulated specifically in the tonoplast membranes and were localized predominantly in the pericycle and xylem parenchyma cells of roots and hypocotyls. In roots, SULTR4;1 was constantly accumulated regardless of the changes of sulfur conditions, whereas SULTR4;2 became abundant by sulfur limitation. In shoots, both transporters were accumulated by sulfur limitation. Vacuoles isolated from callus of the sultr4;1 sultr4;2 double knockout showed excess accumulation of sulfate, which was substantially decreased by overexpression of SULTR4;1-GFP. In seedlings, the supplied [(35)S]sulfate was retained in the root tissue of the sultr4;1 sultr4;2 double knockout mutant. Comparison of the double and single knockouts suggested that SULTR4;1 plays a major role and SULTR4;2 has a supplementary function. Overexpression of SULTR4;1-GFP significantly decreased accumulation of [(35)S]sulfate in the root tissue, complementing the phenotype of the double mutant. These results suggested that SULTR4-type transporters, particularly SULTR4;1, actively mediate the efflux of sulfate from the vacuole lumen into the cytoplasm and influence the capacity for vacuolar storage of sulfate in the root tissue. The efflux function will promote rapid turnover of sulfate from the vacuoles particularly in the vasculature under conditions of low-sulfur supply, which will optimize the symplastic (cytoplasmic) flux of sulfate channeled toward the xylem vessels.  相似文献   
16.
The ubiquitous small heat shock proteins (sHsps) are efficient molecular chaperones that interact with nonnative proteins, prevent their aggregation, and support subsequent refolding. No obvious substrate specificity has been detected so far. A striking feature of sHsps is that they form large complexes with nonnative proteins. Here, we used several well established model chaperone substrates, including citrate synthase, alpha-glucosidase, rhodanese, and insulin, and analyzed their interaction with murine Hsp25 and yeast Hsp26 upon thermal unfolding. The two sHsps differ in their modes of activation. In contrast to Hsp25, Hsp26 undergoes a temperature-dependent dissociation that is required for efficient substrate binding. Our analysis shows that Hsp25 and Hsp26 reacted in a similar manner with the nonnative proteins. For all substrates investigated, complexes of defined size and shape were formed. Interestingly, several different nonnative proteins could be incorporated into defined sHsp-substrate complexes. The first substrate protein bound seems to determine the complex morphology. Thus, despite the differences in quaternary structure and mode of activation, the formation of large uniform sHsp-substrate complexes seems to be a general feature of sHsps, and this unique chaperone mechanism is conserved from yeast to mammals.  相似文献   
17.
18.
Piv, a site-specific invertase from Moraxella lacunata, exhibits amino acid homology with the transposases of the IS110/IS492 family of insertion elements. The functions of conserved amino acid motifs that define this novel family of both transposases and site-specific recombinases (Piv/MooV family) were examined by mutagenesis of fully conserved amino acids within each motif in Piv. All Piv mutants altered in conserved residues were defective for in vivo inversion of the M. lacunata invertible DNA segment, but competent for in vivo binding to Piv DNA recognition sequences. Although the primary amino acid sequences of the Piv/MooV recombinases do not contain a conserved DDE motif, which defines the retroviral integrase/transposase (IN/Tnps) family, the predicted secondary structural elements of Piv align well with those of the IN/Tnps for which crystal structures have been determined. Molecular modelling of Piv based on these alignments predicts that E59, conserved as either E or D in the Piv/MooV family, forms a catalytic pocket with the conserved D9 and D101 residues. Analysis of Piv E59G confirms a role for E59 in catalysis of inversion. These results suggest that Piv and the related IS110/IS492 transposases mediate DNA recombination by a common mechanism involving a catalytic DED or DDD motif.  相似文献   
19.
The energetic consequences of strict oxyconformity in the intertidal worm S. nudus were studied by characterizing the Po2 dependence of respiration in mitochondria isolated from the body wall tissue. Mitochondrial respiration rose in a Po2 range between 2.8 and 31.3 kPa from a mean of 56.5 to 223.9 nmol O mg protein(-1) h(-1). Respiration was sensitive to both salicylhydroxamic acid (SHAM) and KCN. Po2 dependence remained unchanged with saturating and non-saturating substrate levels (malate, glutamate and ADP). A concomitant decrease of the ATP/O ratio revealed a lower ATP yield of aerobic metabolism at elevated Po2. Obviously, oxyconforming respiration implies progressive uncoupling of mitochondria. The decrease in ATP/O ratios at higher Po2 was completely reversible. Addition of 90.9 micromol H2O2 l(-1) did not inhibit ATP synthesis. Both observations suggest that oxidative injury did not contribute to oxyconformity. The contribution of the rates of mitochondrial ROS production and proton leakiness to mitochondrial oxygen consumption and uncoupling was investigated by using oligomycin as a specific inhibitor of the ATP synthase. The maximum contribution of oligomycin independent respiration to state 3 respiration remained below 6% and showed a minor, insignificant increase at elevated Po2, at a slope significantly lower than the increment of state 3 respiration. Therefore, Po2 dependent mitochondrial proton leakage or ROS production cannot explain oxyconformity. In conclusion Po2 dependent state 3 respiration likely relates to the progressive contribution of an alternative oxidase (cytochrome o), which is characterized by a low affinity to oxygen and an ATP/O ratio similar to the branched respiratory system of bacteria. The molecular nature of the alternative oxidase in lower invertebrates is still obscure.  相似文献   
20.
Hsp90 is an abundant molecular chaperone involved in a variety of cellular processes ranging from signal transduction to viral replication. The function of Hsp90 has been shown to be dependent on its ability to hydrolyze ATP, and in vitro studies suggest that the dimeric nature of Hsp90 is critical for this activity. ATP binding occurs at the N-terminal domains of the Hsp90 dimer, whereas the main dimerization site resides in the very C-terminal domain. ATP hydrolysis is performed in a series of conformational changes. These include the association of the two N-terminal domains, which has been shown to stimulate the hydrolysis reaction. In this study, we set out to identify regions in the N-terminal domain that are important for this interaction. We show that N-terminal deletion variants of Hsp90 are severely impaired in their ability to hydrolyze ATP. However, nucleotide binding of these constructs is similar to that of the wild type protein. Heterodimers of the Hsp90 deletion mutants with wild type protein showed that the first 24 amino acids play a crucial role during the ATPase reaction, because their deletion abolishes the trans-activation between the two N-terminal domains. We propose that the turnover rate of Hsp90 is decisively controlled by intermolecular interactions between the N-terminal domains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号