首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10997篇
  免费   863篇
  国内免费   8篇
  11868篇
  2022年   59篇
  2021年   97篇
  2020年   52篇
  2019年   88篇
  2018年   130篇
  2017年   145篇
  2016年   197篇
  2015年   348篇
  2014年   378篇
  2013年   516篇
  2012年   619篇
  2011年   648篇
  2010年   437篇
  2009年   435篇
  2008年   578篇
  2007年   663篇
  2006年   629篇
  2005年   630篇
  2004年   609篇
  2003年   610篇
  2002年   618篇
  2001年   140篇
  2000年   134篇
  1999年   173篇
  1998年   215篇
  1997年   163篇
  1996年   143篇
  1995年   140篇
  1994年   131篇
  1993年   154篇
  1992年   176篇
  1991年   132篇
  1990年   143篇
  1989年   114篇
  1988年   96篇
  1987年   92篇
  1986年   69篇
  1985年   113篇
  1984年   102篇
  1983年   78篇
  1982年   97篇
  1981年   83篇
  1980年   75篇
  1979年   75篇
  1978年   60篇
  1977年   75篇
  1976年   69篇
  1975年   46篇
  1974年   46篇
  1973年   50篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
141.
Enzymes as drugs have two important features that distinguish them from all other types of drugs. First, enzymes often bind and act on their targets with great affinity and specificity. Second, enzymes are catalytic and convert multiple target molecules to the desired products. These two features make enzymes specific and potent drugs that can accomplish therapeutic biochemistry in the body that small molecules cannot. These characteristics have resulted in the development of many enzyme drugs for a wide range of disorders.  相似文献   
142.
External antiparasitic drugs used in cats and dogs have evolved in terms of active ingredients but also regarding formulations. Old chemical groups have been supplanted by phenylpyrazoles, neonicotinoids, oxadiazines, spinosyns or others which are entering the veterinary market. In addition to insecticides-acaricides, insect and mite growth inhibitors (IGRs) have emerged. These IGRs are used in animals or in the environment, either alone or in combination with insecticides-acaricides. The notion of antiparasitic treatment has evolved to the concept of prevention of ectoparasite infestation but also of transmitted diseases through the introduction of formulations providing long-lasting activity. At the same time, ease-of-use has been improved with the development of spot-on formulations. Progress has also been achieved through the development of antiparasitic drugs providing control of both external and internal parasites.  相似文献   
143.
144.
145.

Background

F1FO ATP synthases catalyze the synthesis of ATP from ADP and inorganic phosphate driven by ion motive forces across the membrane. A number of ATP synthases have been characterized to date. The one from the hyperthermophilic bacterium Aquifex aeolicus presents unique features, i.e. a putative heterodimeric stalk. To complement previous work on the native form of this enzyme, we produced it heterologously in Escherichia coli.

Methods

We designed an artificial operon combining the nine genes of A. aeolicus ATP synthase, which are split into four clusters in the A. aeolicus genome. We expressed the genes and purified the enzyme complex by affinity and size-exclusion chromatography. We characterized the complex by native gel electrophoresis, Western blot, and mass spectrometry. We studied its activity by enzymatic assays and we visualized its structure by single-particle electron microscopy.

Results

We show that the heterologously produced complex has the same enzymatic activity and the same structure as the native ATP synthase complex extracted from A. aeolicus cells. We used our expression system to confirm that A. aeolicus ATP synthase possesses a heterodimeric peripheral stalk unique among non-photosynthetic bacterial F1FO ATP synthases.

Conclusions

Our system now allows performing previously impossible structural and functional studies on A. aeolicus F1FO ATP synthase.

General significance

More broadly, our work provides a valuable platform to characterize many other membrane protein complexes with complicated stoichiometry, i.e. other respiratory complexes, the nuclear pore complex, or transporter systems.  相似文献   
146.
147.
148.
Parasitic illnesses are major causes of human disease and misery worldwide. Among them, both amebiasis and Chagas disease, caused by the protozoan parasites, Entamoeba histolytica and Trypanosoma cruzi, are responsible for thousands of annual deaths. The lack of safe and effective chemotherapy and/or the appearance of current drug resistance make the development of novel pharmacological tools for their treatment relevant. In this sense, within the framework of the medicinal inorganic chemistry, metal-based drugs appear to be a good alternative to find a pharmacological answer to parasitic diseases. In this work, novel ruthenium complexes [RuCl2(HL)(HPTA)2]Cl2 with HL = bioactive 5-nitrofuryl containing thiosemicarbazones and PTA?=?1,3,5-triaza-7-phosphaadamantane have been synthesized and fully characterized. PTA was included as co-ligand in order to modulate complexes aqueous solubility. In fact, obtained complexes were water soluble. Their activity against T. cruzi and E. histolytica was evaluated in vitro. [RuCl2(HL4)(HPTA)2]Cl2 complex, with HL4?=?N-phenyl-5-nitrofuryl-thiosemicarbazone, was the most active compound against both parasites. In particular, it showed an excellent activity against E. histolytica (half maximal inhibitory concentration (IC50)?=?5.2 μM), even higher than that of the reference drug metronidazole. In addition, this complex turns out to be selective for E. histolytica (selectivity index (SI) >38). The potential mechanism of antiparasitic action of the obtained ruthenium complexes could involve oxidative stress for both parasites. Additionally, complexes could interact with DNA as second potential target by an intercalative-like mode. Obtained results could be considered a contribution in the search for metal compounds that could be active against multiple parasites.  相似文献   
149.
150.
MEK is a dual-specificity kinase that activates the extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase upon agonist binding to receptors. The ERK/MAP kinase cascade is involved in cell fate determination in many organisms. In mammals, this pathway is proposed to regulate cell growth and differentiation. Genetic studies have shown that although a single Mek gene is present in Caenorhabditis elegans, Drosophila melanogaster, and Xenopus laevis, two Mek homologs, Mek1 and Mek2, are present in the mammalian cascade. The inactivation of the Mek1 gene leads to embryonic lethality and has revealed the unique role played by Mek1 during embryogenesis. To investigate the biological function of the second homolog, we have generated mice deficient in Mek2 function. Mek2 mutant mice are viable and fertile, and they do not present flagrant morphological alteration. Although several components of the ERK/MAP kinase cascade have been implicated in thymocyte development, no such involvement was observed for MEK2, which appears to be nonessential for thymocyte differentiation and T-cell-receptor-induced proliferation and apoptosis. Altogether, our findings demonstrate that MEK2 is not necessary for the normal development of the embryo and T-cell lineages, suggesting that the loss of MEK2 can be compensated for by MEK1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号