首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1238篇
  免费   100篇
  国内免费   75篇
  1413篇
  2023年   14篇
  2022年   38篇
  2021年   63篇
  2020年   28篇
  2019年   47篇
  2018年   55篇
  2017年   28篇
  2016年   45篇
  2015年   70篇
  2014年   92篇
  2013年   93篇
  2012年   80篇
  2011年   98篇
  2010年   63篇
  2009年   72篇
  2008年   68篇
  2007年   46篇
  2006年   58篇
  2005年   46篇
  2004年   30篇
  2003年   35篇
  2002年   38篇
  2001年   25篇
  2000年   23篇
  1999年   26篇
  1998年   11篇
  1997年   8篇
  1996年   7篇
  1995年   9篇
  1994年   4篇
  1993年   8篇
  1992年   11篇
  1991年   6篇
  1990年   6篇
  1989年   7篇
  1988年   4篇
  1987年   7篇
  1986年   8篇
  1985年   7篇
  1984年   2篇
  1983年   3篇
  1981年   2篇
  1977年   2篇
  1975年   4篇
  1974年   2篇
  1973年   3篇
  1970年   1篇
  1969年   2篇
  1964年   2篇
  1960年   1篇
排序方式: 共有1413条查询结果,搜索用时 0 毫秒
71.
Koide S  Bu Z  Risal D  Pham TN  Nakagawa T  Tamura A  Engelman DM 《Biochemistry》1999,38(15):4757-4767
Outer surface protein A (OspA) from the Lyme disease spirochete, Borrelia burgdorferi, is a dumbbell-shaped protein in which two globular domains are connected by a three-stranded beta-sheet segment that is solvent-exposed on both faces. Previous studies showed that the whole protein, including the single-layer beta-sheet, is highly rigid. To elucidate the folding mechanism and the role of the central beta-sheet in the formation of the rigid molecule, we investigated the equilibrium thermal denaturation reaction of OspA. We applied differential scanning calorimetry, heteronuclear NMR spectroscopy, and solution small-angle X-ray scattering (SAXS) to characterize the reaction in detail. All three techniques revealed that OspA denatures in two separable cooperative transitions. NMR measurements on OspA specifically 15N-labeled at Lys residues identified the locations of the two folding units and revealed that the C-terminal segment is less stable than the remaining N-terminal segment. The boundary between the two folding units is located within the central beta-sheet. The interconversion among the three folding states (fully folded, C-terminus unfolded, and fully denatured) is slow relative to chemical shift differences (<24 Hz), indicating that there are significant kinetic barriers in the denaturation reactions. SAXS measurements determined the radius of gyration of the native protein to be 25.0 +/- 0.3 A, which increases to 34.4 +/- 1.0 A in the first transition, and then to 56.1 +/- 1.6 A in the second transition. Thus, the intermediate state, in which the C-terminal folding unit is already denatured, is still compact. These results provide a basis for elucidating the folding mechanism of OspA.  相似文献   
72.
73.
We describe here a spontaneous, autosomal recessive mutant mouse suffering from skin and hair defects, which arose in the outbred Kunming strain. By haplotype analysis and direct sequencing of PCR products, we show that this mutation is a new allele of the asebia locus with a naturally occurring mutation in the Scd1 gene (a CCC insertion at nucleotide position 835 in exon 5), which codes for stearoyl-CoA desaturase 1. This mutation introduces an extra proline residue at position 279 in the Scd1 protein. The mutant mice, originally designated km/km but now assigned the name Scd1 ab-Xyk (hereafter abbreviated as ab Xyk / ab Xyk ), have a similar gross and histological phenotype to that reported for previously characterized allelic asebia mutations ( Scd1 ab , Scd1 abJ , Scd1 ab2J , and Scd1 tm1Ntam ). Histological analysis showed they were also characterized by hypoplasic sebaceous glands and abnormal hair follicles. In a cross between Kunming- ab Xyk / ab Xyk and ABJ/Le- ab J / ab J mice, all the progeny showed the same phenotype, indicating that the two mutations were non-complementing and therefore allelic. Comparisons with the other four allelic mutants indicate that the Scd1 ab-Xyk mutation causes the mildest change in Scd1 function. This new mouse mutant is a good model not only for the study of scarring alopecias in humans, which are characterized by hypoplasic sebaceous glands, but also for studying the structure and function of the Scd1 protein.Communicated by G. ReuterThe first two authors contribute equally to this work  相似文献   
74.
目的:探讨褪黑素(MT)对小鼠卵母细胞的体外成熟的影响.方法:通过卵母细胞自发、次黄嘌呤(HX)阻滞和激素诱导成熟三种体外培养模型研究了褪黑素(MT)对小鼠卵母细胞体外成熟的影响.结果:①0.1 g/L、0.02g/L、0.004 g/L及0.0008 g/L浓度的MT均能显著抑制小鼠卵丘卵母细胞复合体(CEOs)自发成熟过程中第一极体(PB1)的释放(P<0.01);②动力曲线分析表明,MT对自发成熟的CEOs的GVBD和PB1有显著的推后作用,与对照组相比,处理组的GVBD和PB1分别被推后8~10 h和3~4 h;③0.1 g/L和0.02 g/L两有效浓度的MT还能显著抑制促性腺激素(FSH)诱导的HX阻滞的CEOsGVBD的发生(P<0.05),对PB1的排出虽有一定的抑制作用,但没有统计学意义;④MT和次黄嘌呤(HX)对CEOs的自发成熟有协同抑制作用(P<0.01),但在裸卵(DO)自发成熟的阻滞中没有协同效应.结论:MT是调节哺乳动物卵母细胞成熟的重要激素之一,其作用机制可能是通过卵丘细胞实现的.  相似文献   
75.
The low-density lipoprotein receptor (LDLR) family is composed of a class of single transmembrane glycoproteins, generally recognized as cell surface endocytic receptors, which bind and internalize extracellular ligands for degradation by lysosomes. Structurally, members of the LDLR family share homology within their extracellular domains, which are highlighted by the presence of clusters of ligand-binding repeats. Recently, information regarding the structural and functional elements within their cytoplasmic tails has begun to emerge, which suggests that members of the LDLR family function not only in receptor-mediated endocytosis, but also in transducing signals that are important during embryonic development and the pathogenesis of Alzheimer's disease. This review focuses on recent knowledge of the structural and functional aspects of LDLR family members in endocytosis and signal transduction. The relationship of these functions to the development of the neuronal system and in the pathogenesis of Alzheimer's disease is specifically discussed.  相似文献   
76.
The complexes of Cu(I), Cu(II), Ni(II), Zn(II) and Co(II) with a new polypyridyl ligand, 2,3-bis(2-pyridyl)-5,8-dimethoxyquinoxaline (L), have been synthesized and characterized. The crystal structures of these complexes have been elucidated by X-ray diffraction analyses and three types of coordination modes for L were found to exist in them. In the dinuclear complex [Cu(I)L(CH3CN)]2·(ClO4)2 (1), L acts as a tridentate ligand with two Cu(I) centers bridged by two L ligands to form a box-like dimeric structure, in which each Cu(I) ion is penta-coordinated with three nitrogen atoms and a methoxyl oxygen atom of two L ligands, and an acetonitrile. In [Cu(II)L(NO3)2]·CH3CN 2, the Cu(II) center is coordinated to the two nitrogen atoms of the two pyridine rings of L which acts as a bidentate ligand. The structures of [Ni(II)L(NO3)(H2O)2]·2CH3CN·NO3 (3), [Zn(II)L(NO3)2 (H2O)]·2CH3CN (4) and [Co(II)LCl2(H2O)] (5) are similar to each other in which L acts as a tridentate ligand by using its half side, and the metal centers are coordinated to a methoxyl oxygen atom and two bipyridine nitrogen atoms of L in the same side. The formation of infinite quasi-one-dimensional chains (1, 4 and 5) or a quasi-two-dimensional sheet (2) assisted by the intra- or intermolecular face-to-face aryl stacking interactions and hydrogen bonds may have stabilized the crystals of these complexes. Luminescence studies showed that 1 exhibits broad, structureless emissions at 420 nm in the solid state and at 450 nm in frozen alcohol frozen glasses at 77 K. Cyclic voltammetric studies of 1 show the presence of an irreversible metal-centered reduction wave at approximately −0.973 V versus Fc+/0 and a quasi-reversible ligand-centered reduction couple at approximately −1.996 V versus Fc+/0. The solution behaviors of these complexes have been further studied by UV-Vis and ESR techniques.  相似文献   
77.
Qi YF  Bu DF  Niu DD  Shi YR  Wang SH  Pang YZ  Tang CS  Du JB 《Peptides》2002,23(6):1141-1147
Primary culture of vascular smooth muscle cells (VSMC) from rat aorta was used for the study of the effect of different peptides derived from proadrenomedullin on the expression of adrenomedullin (ADM) gene. ADM and preproADM(22-41) (PAMP) secreted by VSMC were measured by radioimmunoassay, and ADM mRNA in VSMC was determined by quantitative RT-PCR. After the incubation of VSMC in 10(-7)M ADM for 24h, PAMP in the medium and ADM mRNA in the VSMC were decreased by 34 and 41.3%, respectively, and cAMP concentration in the VSMC was increased by 385%. After the incubation of VSMC in 10(-7)M PAMP for 24h, ADM in the medium and ADM mRNA in the VSMC were decreased by 12.2 and 39.1%, respectively, and cAMP concentration in the VSMC was increased by 67%. The decreased ADM mRNA in VSMC induced by the ADM and PAMP treatment was completely reversed by the pre-treatment of the cells in 10(-7)M protein kinase inhibitor for 30 min. After the incubation of VSMC in 10(-7)M preproADM(153-185) (ADT) for 24h, however, ADM in the medium and ADM mRNA in the VSMC were increased by 21 and 35.2%. The increased ADM mRNA in VSMC induced by the ADT treatment was partially blocked by the co-incubation in ADM and ADT, and was totally blocked by the co-incubation in PAMP+ADM and ADT, but was not blocked by the co-incubation in PAMP and ADT. Our results suggest that the four peptides derived from proadrenomedullin may have different effects, possibly through a cAMP-dependent pathway, on the expression of ADM gene.  相似文献   
78.
79.
Qi YF  Shi YR  Bu DF  Pang YZ  Tang CS 《Peptides》2003,24(3):463-468
Adrenomedullin is a potent vasodilator peptide originally isolated from a pheochromocytoma. Recently, a novel adrenomedullin receptor has been identified as a complex of calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein 2 (RAMP2). To explore the pathophysiological roles of adrenomedullin and its receptor component RAMP2 in ischemic cardiovascular diseases, we studied the changes of adrenomedullin and RAMP2 mRNA in myocardium and aorta in rats with isoproterenol (ISO)-induced myocardial impairment. In ISO-treated rats, heart became enlarged markedly, the ratio of heart to body weight was increased by 54% (P<0.01), and myocardial malondialdehyde content and plasma lactate dehydrogenase activity was elevated by 43% (P<0.01) and 138% (P<0.01), respectively. Immunoreactive adrenomedullin (ADM) in plasma, myocardium and aorta was augmented by 116.7% (P<0.01), 50.8% (P<0.01) and 12.5% (P>0.05), respectively. ADM mRNA in myocardium and aorta was increased by 96.8% (P<0.01) and 38.5% (P<0.01), respectively. RAMP2 mRNA in myocardium and aorta was increased by 19.6% (P<0.05) and 15.8% (P<0.01), respectively. These results suggest that the increase of ADM level and the up-regulation of ADM and RAMP2 gene in myocardium and aorta may be significant in the pathogenesis of ischemic myocardiopathy.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号