首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   490篇
  免费   61篇
  2022年   10篇
  2021年   6篇
  2020年   16篇
  2019年   17篇
  2018年   14篇
  2017年   3篇
  2016年   20篇
  2015年   27篇
  2014年   20篇
  2013年   35篇
  2012年   22篇
  2011年   30篇
  2010年   29篇
  2009年   15篇
  2008年   26篇
  2007年   23篇
  2006年   21篇
  2005年   21篇
  2004年   31篇
  2003年   12篇
  2002年   19篇
  2001年   4篇
  2000年   6篇
  1995年   5篇
  1994年   3篇
  1992年   5篇
  1990年   4篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1983年   5篇
  1981年   2篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1973年   8篇
  1972年   3篇
  1971年   2篇
  1966年   4篇
  1965年   7篇
  1964年   4篇
  1963年   3篇
  1961年   3篇
  1958年   2篇
  1918年   2篇
  1908年   2篇
排序方式: 共有551条查询结果,搜索用时 31 毫秒
121.
Experiments were carried out to examine the effects of nitrogen source on nitrogen incorporation into cyanophycin during nitrogen limitation and repletion, both with or without inhibition of protein synthesis, in cyanobacteria grown on either nitrate or ammonium. The use of nitrate and ammonium, 14N labeled in the growth medium and 15N labeled in the repletion medium, allows the determination of the source of nitrogen in cyanophycin using proton nuclear magnetic resonance spectroscopy. The data suggest that nitrogen from both the breakdown of cellular protein (14N) and directly from the medium (15N) is incorporated into cyanophycin. Nitrogen is incorporated into cyanophycin at different rates and to different extents, depending on the source of nitrogen (ammonium or nitrate) and whether the cells are first starved for nitrogen. These differences appear to be related to the activity of nitrate reductase in cells and to the possible expression of cyanophycin synthetase during nitrogen starvation.  相似文献   
122.
Mycobacterium tuberculosis uses numerous mechanisms to avoid elimination by the infected host. In this study, we investigated the possibility whether, similar to other pathogens, M. tuberculosis exploits natural CD4+ CD25+ T-regulatory cells (Treg) to suppress the effector function of responding host lymphocytes, thus enhancing its survival. During a Mycobacterium bovis bacille calmette guerin (BCG) pulmonary infection, we observed a 2.8-fold increase in forkhead box P3 (Foxp3+) CD25+ Treg in the lung. To inactivate the Treg in vivo, an mAb was given against CD25 (PC61) 3 days before a pulmonary infection with BCG or M. tuberculosis. Following PC61 treatment, we observed significantly decreased CD25 expression on CD4+ T lymphocytes for at least 23 days in the blood, spleen and lung when compared with the control mice. To determine whether Treg inactivation affected the protective antimycobacterial immune response, we measured cytokine production by flow cytometry. We observed small, but significant increases in the percentages of both IFN-gamma-producing and IL-2-producing CD4+ cells from the spleen and the IL-2-producing CD4+ cells from the lungs of PC61-treated BCG-infected mice compared with the infected control mice. Despite this, there was neither a difference between the lung bacterial burdens of PC61-treated mice and control mice, measured until day 44 postinfection, nor was there an effect on infection-induced lung pathology. Together, these data imply that the absence of natural Treg early after infection results in a small increase in cytokine production, but this does not alter the course of either M. tuberculosis or BCG infections. This contrasts with the important role that natural Treg play in the pathogenesis of many other intracellular infectious organisms.  相似文献   
123.
In the mouse, Purkinje cell degeneration (pcd) is a recessive mutation characterized by degeneration of cerebellar Purkinje cells, retinal photoreceptors, olfactory bulb mitral neurons, and certain thalamic neurons, and is accompanied by defective spermatogenesis. Previous studies of pcd have led to the identification of Nna1 as the causal gene; however, how loss of Nna1 function results in neurodegeneration remains unresolved. One useful approach for establishing which functional domains of a protein underlie a recessive phenotype has been to determine the genetic basis of the various alleles at the locus of interest. Because none of the pcd alleles analyzed at the time of the identification of Nna1 provided insight into the molecular basis of Nna1 loss-of-function, we obtained a recent pcd remutation—pcd5J, and after determining that its phenotype is comparable to existing pcd severe alleles, we sought its genetic basis by sequencing Nna1. In this article we report that pcd5J results from the insertion of a single GAC triplet encoding an aspartic acid residue at position 775 of Nna1. Although this insertion does not affect Nna1 expression at the RNA level, Nna1pcd-5J protein expression is markedly decreased. Pulse-chase experiments reveal that the aspartic acid insertion dramatically destabilizes Nna1pcd-5J protein, accounting for the observation that pcd5J is a severe allele. The presence of a readily detectable genetic mutation in pcd5J confirms that Nna1 loss-of-function alone underlies the broad pcd phenotype and will facilitate further studies of how Nna1 loss-of-function produces neurodegeneration and defective spermatogenesis in pcd mice.  相似文献   
124.
Previously we described Tomato bushy stunt virus (TBSV) vectors, which retained their capsid protein gene and were engineered with magnesium chelatase (ChlH) and phytoene desaturase (PDS) gene sequences from Nicotiana benthamiana. Upon plant infection, these vectors eventually lost the inserted sequences, presumably as a result of recombination. Here, we modified the same vectors to also contain the plant miR171 or miR159 target sequences immediately 3′ of the silencing inserts. We inoculated N. benthamiana plants and sequenced recombinant RNAs recovered from noninoculated upper leaves. We found that while some of the recombinant RNAs retained the microRNA (miRNA) target sites, most retained only the 3′ 10 and 13 nucleotides of the two original plant miRNA target sequences, indicating in planta miRNA-guided RNA-induced silencing complex cleavage of the recombinant TBSV RNAs. In addition, recovered RNAs also contained various fragments of the original sequence (ChlH and PDS) upstream of the miRNA cleavage site, suggesting that the 3′ portion of the miRNA-cleaved TBSV RNAs served as a template for negative-strand RNA synthesis by the TBSV RNA-dependent RNA polymerase (RdRp), followed by template switching by the RdRp and continued RNA synthesis resulting in loss of nonessential nucleotides.Several plant viruses have been developed as tools for various biotechnology applications, including expression platforms for protein production in plants (1, 2, 6) and as gene silencing systems as part of reverse genetics approaches toward understanding host plant gene function (4, 5). For both of these applications, nonviral sequences conferring the desired function are cloned into the virus genome in order to be expressed during replication in plants. One advantage of using viruses engineered with nonviral sequences is flexibility in manipulating these “extra” sequences, which are not essential for viral replication or movement (1). However, recombinant viruses also tend to lose these sequences, causing instability at the insertion site and resulting in loss of function of the recombinant viral vector. The relatively high error rates of viral replicases (7, 14, 24) and the propensity for recombination events (9) contribute to the instability often seen with some viral vector systems.Recombination events in RNA viruses typically result in joining of two noncontiguous RNA segments (16). These could be sequences from two separate RNA molecules or distant regions of the same molecule. Retention by viruses of favorable sequences is selection driven and eliminates sequences that are unnecessary or negatively affect fitness (11, 31), hence making recombination critical to virus evolution (13, 29). Although phylogenetic analyses predict that recombination events have affected evolution for essentially all groups of RNA viruses (3), some viruses appear to be more prone to recombination than others. For example, plant-infecting supergroup II viruses of the family Tombusviridae appear to undergo frequent recombination, as is supported by the many well-characterized defective-interfering (DI) RNAs of Tomato bushy stunt virus (TBSV) (10, 30). The TBSV DI RNAs, derived entirely from the parental viral RNA, are not replication competent alone and depend on the parent virus to replicate them in trans. Recent developments of in vitro systems (19, 21) have further enhanced dissection of recombination mechanisms giving rise to TBSV DI RNAs.Of the proposed mechanisms for viral recombination (12, 20), the copy choice or template-switching mechanism is the most widely reported (8, 16, 18). This occurs when the viral replicase and its attached nascent polynucleotide chain switches viral RNA templates (or jumps locations on the same template) when making cRNA. Some properties for preferred donor/acceptor sites (sequences in the RNA molecule at which viral replicase switches from one template to another) are known for various RNA viruses (3, 20, 27), suggesting that recombination is not entirely random.The previously described TBSV vectors were efficient silencers of host genes but only while the inserted sequences were retained (23). Thus, optimizing viral vectors requires a better understanding of factors responsible for recombination and consequent loss of insert sequences. In order to address possible recombination mechanisms, we used previously characterized sequence-specific microRNA (miRNA)-guided cleavage determinants as parts of our TBSV vectors. We introduced the miRNA target site sequences for miR171 or miR159 3′ to the silencing inserts of our TBSV vectors (23). After plant inoculation, we analyzed recombinant virus sequences, determining specific recombination patterns, and demonstrated miRNA-mediated recombination events in vivo for the recombinant TBSV vectors. We also showed miRNA-guided RNA-induced silencing complex (RISC)-mediated cleavage for recombinant TBSV RNA and evidence supporting the TBSV RNA-dependent RNA polymerase (RdRp) switching templates during cRNA synthesis.  相似文献   
125.
Because of its unusual spectroscopic properties, green fluorescent protein (GFP) has become a useful tool in molecular genetics, biochemistry and cell biology. Here, we computationally characterize the behavior of two GFP constructs, designed as bioprobes for enzymatic triggering using intramolecular fluorescence resonance energy transfer (FRET). These constructs differ in the location of an intramolecular FRET partner, an attached chemical chromophore (either near an N-terminal or C-terminal site). We apply the temperature replica exchange molecular dynamics method to the two flexible constructs in conjunction with a generalized Born implicit solvent model. The calculated rate of FRET was derived from the interchromophore distance, R, and orientational factor, kappa(2). In agreement with experiment, the construct with the C-terminally attached dye was predicted to have higher energy transfer rate than observed for the N-terminal construct. The molecular basis for this observation is discussed. In addition, we find that the orientational factor, kappa(2), deviates from the commonly assumed value, the implications of which are also considered.  相似文献   
126.
127.
For many decades effective insect repellents have relied on synthetic actives such as N,N -diethyl- meta -toluamide. Increasingly, consumers are seeking natural-based alternatives to many everyday products including insect repellents. While many studies have been published detailing the potential of essential oils to act as insect repellents, few oils have been identified as viable alternatives to synthetic actives. This study details the process involved in the selection of Australian essential oils effective as repellents and the subsequent testing of natural-based insect repellents using the selected oils. Using a combination of laboratory-based and field-based testing, oil from Melaleuca ericifolia was identified as being an effective insect repellent. When formulated into three different bases: an alcohol-based spray, an emulsion and a gel, these Melaleuca -based repellents were shown to be as effective at repelling mosquitoes Aedes vigilax (Skuse) (Diptera: Culicidae) and Verrallina carmenti (Edwards) (Diptera: Culicidae), the bush fly Musca vetustissima (Walker) (Diptera: Muscidae), and biting midges Culicoides ornatus (Taylor) (Diptera: Ceratopogonidae) and Culicoides immaculatus (Lee & Reye) (Diptera: Ceratopogonidae) as a synthetic-based commercial repellent. This study has shown that effective insect repellents based on natural active ingredients can deliver repellency on par with synthetic actives in the field. Three Melaleuca -based formulations have been registered as repellents and are now commercially available.  相似文献   
128.
129.
130.
Genetically engineered mice with point mutations in endogenous genes (i.e., knockin mice) are extremely useful tools for dissecting gene function. Currently available methodologies for creating knockin mice are limited in that the introduced mutation is globally present in all cells of the animal from conception through adulthood. In this report, we describe a strategy for creating mice in which a point mutant allele replaces the wild type allele in a conditional manner, e.g., in a tissue-specific and/or temporally restricted pattern. As proof of concept, we created mice that conditionally harbor a point mutated gamma-aminobutyric acid receptor subunit. In the absence of Cre recombinase, the engineered allele produces only wild type product with no evidence of expression of the mutant. In contrast, following Cre-mediated recombination, only the point mutant product is produced. By restricting Cre expression to subpopulations of neurons of postnatal animals, we demonstrate tissue-specific regulation of the point mutant knockin. This strategy will be useful for a wide variety of studies that require precise conditional replacement of an endogenous wild type gene with a point mutant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号