首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4207篇
  免费   398篇
  国内免费   3篇
  2022年   61篇
  2021年   86篇
  2020年   52篇
  2019年   66篇
  2018年   81篇
  2017年   52篇
  2016年   108篇
  2015年   180篇
  2014年   201篇
  2013年   219篇
  2012年   313篇
  2011年   290篇
  2010年   177篇
  2009年   166篇
  2008年   253篇
  2007年   261篇
  2006年   220篇
  2005年   238篇
  2004年   224篇
  2003年   168篇
  2002年   169篇
  2001年   51篇
  2000年   34篇
  1999年   51篇
  1998年   54篇
  1997年   26篇
  1996年   27篇
  1995年   21篇
  1994年   25篇
  1993年   21篇
  1992年   33篇
  1991年   27篇
  1990年   37篇
  1989年   31篇
  1988年   29篇
  1987年   33篇
  1986年   19篇
  1985年   19篇
  1984年   23篇
  1983年   29篇
  1982年   25篇
  1981年   40篇
  1980年   25篇
  1979年   22篇
  1978年   30篇
  1977年   26篇
  1976年   25篇
  1975年   18篇
  1974年   26篇
  1973年   18篇
排序方式: 共有4608条查询结果,搜索用时 31 毫秒
991.
Nitrogen-fixing rhizobial bacteria and leguminous plants have evolved complex signal exchange mechanisms that allow a specific bacterial species to induce its host plant to form invasion structures through which the bacteria can enter the plant root. Once the bacteria have been endocytosed within a host-membrane-bound compartment by root cells, the bacteria differentiate into a new form that can convert atmospheric nitrogen into ammonia. Bacterial differentiation and nitrogen fixation are dependent on the microaerobic environment and other support factors provided by the plant. In return, the plant receives nitrogen from the bacteria, which allows it to grow in the absence of an external nitrogen source. Here, we review recent discoveries about the mutual recognition process that allows the model rhizobial symbiont Sinorhizobium meliloti to invade and differentiate inside its host plant alfalfa (Medicago sativa) and the model host plant barrel medic (Medicago truncatula).  相似文献   
992.
Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron disease (MND). It is currently incurable and treatment is largely limited to supportive care. Family history is associated with an increased risk of ALS, and many Mendelian causes have been discovered. However, most forms of the disease are not obviously familial. Recent advances in human genetics have enabled genome-wide analyses of single nucleotide polymorphisms (SNPs) that make it possible to study complex genetic contributions to human disease. Genome-wide SNP analyses require a large sample size and thus depend upon collaborative efforts to collect and manage the biological samples and corresponding data. Public availability of biological samples (such as DNA), phenotypic and genotypic data further enhances research endeavors. Here we discuss a large collaboration among academic investigators, government, and non-government organizations which has created a public repository of human DNA, immortalized cell lines, and clinical data to further gene discovery in ALS. This resource currently maintains samples and associated phenotypic data from 2332 MND subjects and 4692 controls. This resource should facilitate genetic discoveries which we anticipate will ultimately provide a better understanding of the biological mechanisms of neurodegeneration in ALS.  相似文献   
993.
The imprinted H19 noncoding RNA is a primary microRNA precursor   总被引:4,自引:0,他引:4  
  相似文献   
994.
Nutrients and bioenergetics are prerequisites for proliferation and survival of mammalian cells. We present evidence that the cyclin-dependent kinase inhibitor p27(Kip1), is phosphorylated at Thr 198 downstream of the Peutz-Jeghers syndrome protein-AMP-activated protein kinase (LKB1-AMPK) energy-sensing pathway, thereby increasing p27 stability and directly linking sensing of nutrient concentration and bioenergetics to cell-cycle progression. Ectopic expression of wild-type and phosphomimetic Thr 198 to Asp 198 (T198D), but not unstable Thr 198 to Ala 198 (p27(T198A)) is sufficient to induce autophagy. Under stress conditions that activate the LKB1-AMPK pathway with subsequent induction of autophagy, p27 knockdown results in apoptosis. Thus LKB1-AMPK pathway-dependent phosphorylation of p27 at Thr 198 stabilizes p27 and permits cells to survive growth factor withdrawal and metabolic stress through autophagy. This may contribute to tumour-cell survival under conditions of growth factor deprivation, disrupted nutrient and energy metabolism, or during stress of chemotherapy.  相似文献   
995.
Networks of actin filaments, controlled by the Arp2/3 complex, drive membrane protrusion during cell migration. How integrins signal to the Arp2/3 complex is not well understood. Here, we show that focal adhesion kinase (FAK) and the Arp2/3 complex associate and colocalize at transient structures formed early after adhesion. Nascent lamellipodia, which originate at these structures, do not form in FAK-deficient cells, or in cells in which FAK mutants cannot be autophosphorylated after integrin engagement. The FERM domain of FAK binds directly to Arp3 and can enhance Arp2/3-dependent actin polymerization. Critically, Arp2/3 is not bound when FAK is phosphorylated on Tyr 397. Interfering peptides and FERM-domain point mutants show that FAK binding to Arp2/3 controls protrusive lamellipodia formation and cell spreading. This establishes a new function for the FAK FERM domain in forming a phosphorylation-regulated complex with Arp2/3, linking integrin signalling directly with the actin polymerization machinery.  相似文献   
996.
Agent-based modeling (ABM), also termed ‘Individual-basedmodeling (IBM)’, is a computational approach that simulatesthe interactions of autonomous entities (agents, or individualcells) with each other and their local environment to predicthigher level emergent patterns. A literature-derived rule setgoverns the actions of each individual agent. While this techniquehas been widely used in the ecological and social sciences,it has only recently been applied in biomedical research. Thepurpose of this review is to provide an introduction to ABMas it has been used to study complex multi-cell biological phenomena,underscore the importance of coupling models with experimentalwork, and outline future challenges for the ABM field and itsapplication to biomedical research. We highlight a number ofpublished examples of ABM, focusing on work that has combinedexperimental with ABM analyses and how this pairing producesnew understanding. We conclude with suggestions for moving forwardwith this parallel approach.   相似文献   
997.
The development of increasingly high-throughput and sensitive mass spectroscopy-based proteomic techniques provides new opportunities to examine the physiology and pathophysiology of many biologic fluids and tissues. The purpose of this study was to determine protein expression profiles of high-abundance synovial fluid (SF) proteins in health and in the prevalent joint disease osteoarthritis (OA). A cross-sectional study of 62 patients with early OA (n = 21), patients with late OA (n = 21), and control individuals (n = 20) was conducted. SF proteins were separated by using one-dimensional PAGE, and the in-gel digested proteins were analyzed by electrospray ionization tandem mass spectrometry. A total of 362 spots were examined and 135 high-abundance SF proteins were identified as being expressed across all three study cohorts. A total of 135 SF proteins were identified. Eighteen proteins were found to be significantly differentially expressed between control individuals and OA patients. Two subsets of OA that are not dependent on disease duration were identified using unsupervised analysis of the data. Several novel SF proteins were also identified. Our analyses demonstrate no disease duration-dependent differences in abundant protein composition of SF in OA, and we clearly identified two previously unappreciated yet distinct subsets of protein profiles in this disease cohort. Additionally, our findings reveal novel abundant protein species in healthy SF whose functional contribution to SF physiology was not previously recognized. Finally, our studies identify candidate biomarkers for OA with potential for use as highly sensitive and specific tests for diagnostic purposes or for evaluating therapeutic response.  相似文献   
998.
While circadian dysfunction and neurodegeneration are correlated, the mechanism for this is not understood. It is not known if age-dependent circadian dysfunction leads to neurodegeneration or vice-versa, and the proteins that mediate the effect remain unidentified. Here, we show that the knock-down of a regulator (spag) of the circadian kinase Dbt in circadian cells lowers Dbt levels abnormally, lengthens circadian rhythms and causes expression of activated initiator caspase (Dronc) in the optic lobes during the middle of the day or after light pulses at night. Likewise, reduced Dbt activity lengthens circadian period and causes expression of activated Dronc, and a loss-of-function mutation in Clk also leads to expression of activated Dronc in a light-dependent manner. Genetic epistasis experiments place Dbt downstream of Spag in the pathway, and Spag-dependent reductions of Dbt are shown to require the proteasome. Importantly, activated Dronc expression due to reduced Spag or Dbt activity occurs in cells that do not express the spag RNAi or dominant negative Dbt and requires PDF neuropeptide signaling from the same neurons that support behavioral rhythms. Furthermore, reduction of Dbt or Spag activity leads to Dronc-dependent Drosophila Tau cleavage and enhanced neurodegeneration produced by human Tau in a fly eye model for tauopathy. Aging flies with lowered Dbt or Spag function show markers of cell death as well as behavioral deficits and shortened lifespans, and even old wild type flies exhibit Dbt modification and activated caspase at particular times of day. These results suggest that Dbt suppresses expression of activated Dronc to prevent Tau cleavage, and that the circadian clock defects confer sensitivity to expression of activated Dronc in response to prolonged light. They establish a link between the circadian clock factors, light, cell death pathways and Tau toxicity, potentially via dysregulation of circadian neuronal remodeling in the optic lobes.  相似文献   
999.
Restoration of degraded ecosystems is an important societal goal, yet inadequate monitoring and the absence of clear performance metrics are common criticisms of many habitat restoration projects. Funding limitations can prevent adequate monitoring, but we suggest that the lack of accepted metrics to address the diversity of restoration objectives also presents a serious challenge to the monitoring of restoration projects. A working group with experience in designing and monitoring oyster reef projects was used to develop standardized monitoring metrics, units, and performance criteria that would allow for comparison among restoration sites and projects of various construction types. A set of four universal metrics (reef areal dimensions, reef height, oyster density, and oyster size–frequency distribution) and a set of three universal environmental variables (water temperature, salinity, and dissolved oxygen) are recommended to be monitored for all oyster habitat restoration projects regardless of their goal(s). In addition, restoration goal‐based metrics specific to four commonly cited ecosystem service‐based restoration goals are recommended, along with an optional set of seven supplemental ancillary metrics that could provide information useful to the interpretation of prerestoration and postrestoration monitoring data. Widespread adoption of a common set of metrics with standardized techniques and units to assess well‐defined goals not only allows practitioners to gauge the performance of their own projects but also allows for comparison among projects, which is both essential to the advancement of the field of oyster restoration and can provide new knowledge about the structure and ecological function of oyster reef ecosystems.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号