首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5160篇
  免费   518篇
  国内免费   3篇
  5681篇
  2022年   67篇
  2021年   96篇
  2020年   60篇
  2019年   85篇
  2018年   100篇
  2017年   71篇
  2016年   130篇
  2015年   219篇
  2014年   238篇
  2013年   275篇
  2012年   366篇
  2011年   346篇
  2010年   216篇
  2009年   188篇
  2008年   285篇
  2007年   308篇
  2006年   258篇
  2005年   272篇
  2004年   264篇
  2003年   201篇
  2002年   204篇
  2001年   80篇
  2000年   61篇
  1999年   73篇
  1998年   61篇
  1997年   31篇
  1996年   32篇
  1995年   34篇
  1994年   33篇
  1993年   26篇
  1992年   47篇
  1991年   34篇
  1990年   52篇
  1989年   42篇
  1988年   40篇
  1987年   39篇
  1986年   31篇
  1985年   32篇
  1984年   32篇
  1983年   39篇
  1982年   36篇
  1981年   42篇
  1980年   32篇
  1979年   41篇
  1978年   29篇
  1977年   33篇
  1976年   27篇
  1975年   25篇
  1974年   32篇
  1973年   30篇
排序方式: 共有5681条查询结果,搜索用时 0 毫秒
51.
Species interactions are integral drivers of community structure and can change from competitive to facilitative with increasing environmental stress. In subtidal marine ecosystems, however, interactions along physical stress gradients have seldom been tested. We observed seaweed canopy interactions across depth and latitudinal gradients to test whether light and temperature stress structured interaction patterns. We also quantified interspecific and intraspecific interactions among nine subtidal canopy seaweed species across three continents to examine the general nature of interactions in subtidal systems under low consumer pressure. We reveal that positive and neutral interactions are widespread throughout global seaweed communities and the nature of interactions can change from competitive to facilitative with increasing light stress in shallow marine systems. These findings provide support for the stress gradient hypothesis within subtidal seaweed communities and highlight the importance of canopy interactions for the maintenance of subtidal marine habitats experiencing environmental stress.  相似文献   
52.
53.
Functional hemostatic pathways are critical for the survival of all vertebrates and have been evolving for more than 400 million years. The overwhelming majority of studies of hemostasis in vertebrates have focused on mammals with very sparse attention paid to reptiles. There have been virtually no studies of the coagulation pathway in sea turtles whose ancestors date back to the Jurassic period. Sea turtles are often exposed to rapidly altered environmental conditions during diving periods. This may reduce their blood pH during prolonged hypoxic dives. This report demonstrates that five species of turtles possess only one branch of the mammalian coagulation pathway, the extrinsic pathway. Mixing studies of turtle plasmas with human factor-deficient plasmas indicate that the intrinsic pathway factors VIII and IX are present in turtle plasma. These two factors may play a significant role in supporting the extrinsic pathway by feedback loops. The intrinsic factors, XI and XII are not detected which would account for the inability of reagents to induce coagulation via the intrinsic pathway in vitro. The analysis of two turtle factors, factor II (prothrombin) and factor X, demonstrates that they are antigenically/functionally similar to the corresponding human factors. The turtle coagulation pathway responds differentially to both pH and temperature relative to each turtle species and relative to human samples. The coagulation time (prothrombin time) increases as the temperature decreases between 37 and 15 °C. The increased time follows a linear relationship, with similar slopes for loggerhead, Kemps ridley and hawksbill turtles as well as for human samples. Leatherback turtle samples show a dramatic nonlinear increased time below 23 °C, and green turtle sample responses were similar but less dramatic. All samples also showed increased prothrombin times as the pH decreased from 7.8 to 6.4, except for three turtle species. The prothrombin times decreased, to varying extents, in a linear fashion relative to reduced pH with the rate of change greatest in leatherbacks>greenloggerhead turtles. All studies were conducted with reagents developed for human samples which would impact on the quantitative results with the turtle samples, but are not likely to alter the qualitative results. These comparative studies of the coagulation pathway in sea turtles and humans could enhance our knowledge of structure/function relationships and evolution of coagulation factors.  相似文献   
54.
55.
Gelsolin has three actin-binding sites   总被引:8,自引:13,他引:8       下载免费PDF全文
Gelsolin, a Ca2+-modulated actin filament-capping and -severing protein, complexes with two actin monomers. Studies designed to localize binding sites on proteolytic fragments identify three distinct actin-binding peptides. 14NT, a 14-kD fragment that contains the NH2 terminal, will depolymerize F-actin. This peptide forms a 1:1 complex with G-actin which blocks the exchange of etheno-ATP from bound actin. The estimated association and dissociation rates for this complex are 0.3 microM-1 s-1 and 1.35 x 10(-6) s-1 which gives a maximum calculated Kd = 4.5 x 10(-12) M. 26NT, the adjacent peptide on the NH2-terminal half of gelsolin, binds to both G- and F-actin. This fragment has little or no intrinsic severing activity and will bind to F-actin to nearly stoichiometric ratios. The interactions of 14NT and 26NT with actin are largely Ca2+ independent and one of these sites, probably 14NT, is the EGTA-stable site identified in the intact protein. 41CT, the COOH-terminal half of gelsolin, forms a rapidly reversible 1:1 complex with actin, Kd = 25 nM, that slows but does not block etheno-ATP exchange. This interaction is Ca2+ dependent and is the exchangeable site in the intact protein. One of these sites is hidden in the intact protein, but cleavage into half fragments exposes all three and removes the Ca2+ dependence of severing.  相似文献   
56.
57.
58.
59.
The pathogenic oomycete Aphanomyces invadans is the primary etiological agent in ulcerative mycosis, an ulcerative skin disease caused by a fungus-like agent of wild and cultured fish. We developed sensitive PCR and fluorescent peptide nucleic acid in situ hybridization (FISH) assays to detect A. invadans. Laboratory-challenged killifish (Fundulus heteroclitus) were first tested to optimize and validate the assays. Skin ulcers of Atlantic menhaden (Brevoortia tyrannus) from populations found in the Pamlico and Neuse River estuaries in North Carolina were then surveyed. Results from both assays indicated that all of the lesioned menhaden (n = 50) collected in September 2004 were positive for A. invadans. Neither the FISH assay nor the PCR assay cross-reacted with other closely related oomycetes. These results provided strong evidence that A. invadans is the primary oomycete pathogen in ulcerative mycosis and demonstrated the utility of the assays. The FISH assay is the first molecular assay to provide unambiguous visual confirmation that hyphae in the ulcerated lesions were exclusively A. invadans.  相似文献   
60.
HNP1 is a human alpha defensin that forms dimers and multimers governed by hydrophobic residues, including Tyr16, Ile20, Leu25, and Phe28. Previously, alanine scanning mutagenesis identified each of these residues and other hydrophobic residues as important for function. Here we report further structural and functional studies of residues shown to interact with one another across oligomeric interfaces: I20A-HNP1 and L25A-HNP1, plus the double alanine mutants I20A/L25A-HNP1 and Y16A/F28A-HNP1, and the quadruple alanine mutant Y16A/I20A/L25A/F28A-HNP1. We tested binding to HIV-1 gp120 and HNP1 by surface plasmon resonance, binding to HIV-1 gp41 and HNP1 by fluorescence polarization, inhibition of anthrax lethal factor, and antibacterial activity using the virtual colony count assay. Similar to the previously described single mutant W26A-HNP1, the quadruple mutant displayed the least activity in all functional assays, followed by the double mutant Y16A/F28A-HNP1. The effects of the L25A and I20A single mutations were milder than the double mutant I20A/L25A-HNP1. Crystallographic studies confirmed the correct folding and disulfide pairing, and depicted an array of dimeric and tetrameric structures. These results indicate that side chain hydrophobicity is the critical factor that determines activity at these positions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号