首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   5篇
  71篇
  2021年   2篇
  2019年   4篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   5篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2007年   1篇
  2006年   4篇
  2005年   1篇
  2004年   6篇
  2003年   4篇
  2002年   2篇
  2001年   5篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
41.

Background  

Methylthioadenosine, the main by-product of spermidine synthesis, is degraded inBacillus subtilisas adenine and methylthioribose. The latter is an excellent sulfur source and the precursor of quorum-sensing signalling molecules. Nothing was known about methylthioribose recycling in this organism.  相似文献   
42.
BACKGROUND: Benzo(a)pyrene (BaP), anthracene (ANTH) and chrysene (CHRY) are polynuclear aromatic hydrocarbons (PAHs) implicated in renal toxicity and carcinogenesis. These PAHs elicit cell type-specific effects that help predict toxicity outcomes in vitro and in vivo. While BaP and ANTH selectively injure glomerular mesangial cells, and CHRY targets cortico-tubular epithelial cells, binary or ternary mixtures of these hydrocarbons markedly reduce the overall cytotoxic potential of individual hydrocarbons. METHODS: To study the biochemical basis of these antagonistic interactions, renal glomerular mesangial cells were challenged with BaP alone (0.03 - 30 microM) or in the presence of ANTH (3 microM) or CHRY (3 microM) for 24 hr. Total RNA and protein will be harvested for Northern analysis and measurements of aryl hydrocarbon hydroxylase (AHH) and ethoxyresorufin-O-deethylase (EROD) activity, respectively, to evaluate cytochrome P450 mRNA and protein inducibility. Cellular hydrocarbon uptake and metabolic profiles of PAHs were analyzed by high performance liquid chromatography (HPLC). RESULTS: Combined hydrocarbon treatments did not influence the cellular uptake of individual hydrocarbons. ANTH or CHRY strongly repressed BaP-inducible cytochrome P450 mRNA and protein expression, and markedly inhibited oxidative BaP metabolism. CONCLUSION: These findings indicate that antagonistic interactions among nephrocarcinogenic PAHs involve altered expression of cytochrome P450s that modulate bioactivation profiles and nephrotoxic/ nephrocarcinogenic potential.  相似文献   
43.
The FYVE domain mediates the recruitment of proteins involved in membrane trafficking and cell signaling to phosphatidylinositol 3-phosphate (PtdIns(3)P)-containing membranes. To elucidate the mechanism by which the FYVE domain interacts with PtdIns(3)P-containing membranes, we measured the membrane binding of the FYVE domains of yeast Vps27p and Drosophila hepatocyte growth factor-regulated tyrosine kinase substrate and their mutants by surface plasmon resonance and monolayer penetration analyses. These measurements as well as electrostatic potential calculation show that PtdIns(3)P specifically induces the membrane penetration of the FYVE domains and increases their membrane residence time by decreasing the positive charge surrounding the hydrophobic tip of the domain and causing local conformational changes. Mutations of hydrophobic residues located close to the PtdIns(3)P-binding pocket or an Arg residue directly involved in PtdIns(3)P binding abrogated the penetration of the FYVE domains into the monolayer, the packing density of which is comparable with that of biological membranes and large unilamellar vesicles. Based on these results, we propose a mechanism of the membrane binding of the FYVE domain in which the domain first binds to the PtdIns(3)P-containing membrane by specific PtdIns(3)P binding and nonspecific electrostatic interactions, which is then followed by the PtdIns(3)P-induced partial membrane penetration of the domain.  相似文献   
44.
Kravchuk AV  Zhao L  Bruzik KS  Tsai MD 《Biochemistry》2003,42(8):2422-2430
Eukaryotic phosphatidylinositol-specific phospholipase Cs (PI-PLCs) utilize calcium as a cofactor during catalysis, whereas prokaryotic PI-PLCs use a spatially conserved guanidinium group from Arg69. In this study, we aimed to construct a metal-dependent mutant of a bacterial PI-PLC and characterize the catalytic role of the metal ion, seeking an enhanced understanding of the functional differences between these two positively charged moieties. The following results indicate that a bona fide catalytic metal binding site was created by the single arginine-to-aspartate mutation at position 69: (1) The R69D mutant was activated by Ca(2+), and the activation was specific for R69D, not for other mutants at this position. (2) Titration of R69D with Ca(2+), monitored by (15)N-(1)H HSQC (heteronuclear single quantum coherence) NMR, showed that addition of Ca(2+) to R69D restores the environment of the catalytic site analogous to that attained by the WT enzyme. (3) Upon Ca(2+) activation, the thio effect of the S(P)-isomer of the phosphorothioate analogue (k(O)/k(Sp) = 4.4 x 10(5)) approached a value similar to that of the WT enzyme, suggesting a structural and functional similarity between the two positively charged moieties (Arg69 and Asp69-Ca(2+)). The R(P)-thio effect (k(O)/k(Rp) = 9.4) is smaller than that of the WT enzyme by a factor of 5. Consequently, R69D-Ca(2+) displays higher stereoselectivity (k(Rp)/k(Sp) = 47,000) than WT (k(Rp)/k(Sp) = 7600). (4) Results from additional mutagenesis analyses suggest that the Ca(2+) binding site is comprised of side chains from Asp33, Asp67, Asp69, and Glu117. Our studies provide new insight into the mechanism of metal-dependent and metal-independent PI-PLCs.  相似文献   
45.
Analysis of the stomach contents of 1002 specimens of Champsodon snyderi (Champsodontidae) (17.3–91.2mm SL) from Tosa Bay, southern Japan, showed that species to primarily feed on crustaceans and fishes (87.9% by frequency, 37.6% by weight for the former; 17.3% and 60.7% for the latter, respectively), although fishes occurred more often in stomachs of individuals larger than 50mm SL. Champsodon snyderi ingested large prey fishes (60.5–101.0% of predator SL), the maximum weight recorded for a single ingested specimen being 50.9% of the predator weight. Mesopelagic Bregmaceros nectabanus were by far the dominant prey fish, followed by C. snyderi (cannibalism), indicating that C. snyderi leaves the bottom to feed in the pelagic environment during the night.  相似文献   
46.
NSD3s, the proline-tryptophan-tryptophan-proline (PWWP) domain-containing, short isoform of the human oncoprotein NSD3, displays high transforming properties. Overexpression of human NSD3s or the yeast protein Pdp3 in Saccharomyces cerevisiae induces similar metabolic changes, including increased growth rate and sensitivity to oxidative stress, accompanied by decreased oxygen consumption. Here, we set out to elucidate the biochemical pathways leading to the observed metabolic phenotype by analyzing the alterations in yeast metabolome in response to NSD3s or Pdp3 overexpression using 1H nuclear magnetic resonance (NMR) metabolomics. We observed an increase in aspartate and alanine, together with a decrease in arginine levels, on overexpression of NSD3s or Pdp3, suggesting an increase in the rate of glutaminolysis. In addition, certain metabolites, including glutamate, valine, and phosphocholine were either NSD3s or Pdp3 specific, indicating that additional metabolic pathways are adapted in a protein-dependent manner. The observation that certain metabolic pathways are differentially regulated by NSD3s and Pdp3 suggests that, despite the structural similarity between their PWWP domains, the two proteins act by unique mechanisms and may recruit different downstream signaling complexes. This study establishes for the first time a functional link between the human oncoprotein NSD3s and cancer metabolic reprogramming.  相似文献   
47.
It is of interest to compare the hematological profile (using Complete blood count) of COVID patients admitted in ICU, private ward, and isolation ward with varying severity. This data will help predict the severity of infection at peripheries and rural areas.  Detailed history and CBC was performed for all the cases. Different ratios and indexes such as systemic inflammatory index (SII), Neutrophil lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR) were assessed. A total of 862 cases with a mean age of 49.9 ±17.4 years were enrolled. Hemoglobin level, lymphocyte (count per liter and percentage) were significantly lower in patients admitted in ICU as compared to patients admitted in the isolation ward and private ward (p <0.05). However, TLC, neutrophils, platelet count were higher in patients admitted to ICU (p <0.05). The Various ratios such as SII, NLR, and PLR showed significantly higher value in cases admitted in ICU (p <0.05). The TLC, neutrophil count, neutrophil percentage, SII, NLR, and PLR were significant predictors of severe disease (admission in ICU) with high diagnostic accuracy. We show that complete blood count method is a simple, readily available, rapid, and inexpensive tool that can be utilized for diagnosis and can predicting the severity of COVID 19 where RTPCR or trained staff is not available. Thus, NLR (%), SII, PLR, and TLC can predict severe illness with high accuracy.  相似文献   
48.
49.
The propensity to associate or aggregate is one of the characteristic properties of many nonnative proteins. The aggregation of proteins is responsible for a number of human diseases and is a significant problem in biotechnology. Despite this, little is currently known about the effect of self-association on the structural properties and conformational stability of partially folded protein molecules. G-actin is shown to form equilibrium unfolding intermediate in the vicinity of 1.5 M guanidinium chloride (GdmCl). Refolding from the GdmCl unfolded state is terminated at the stage of formation of the same intermediate state. An analogous form, known as inactivated actin, can be obtained by heat treatment, or at moderate urea concentration, or by the release of Ca(2+). In all cases actin forms specific associates comprising partially folded protein molecules. The structural properties and conformational stability of inactivated actin were studied over a wide range of protein concentrations, and it was established that the process of self-association is rather specific. We have also shown that inactivated actin, being denatured, is characterized by a relatively rigid microenvironment of aromatic residues and exhibits a considerable limitation in the internal mobility of tryptophans. This means that specific self-association can play an important structure-forming role for the partially folded protein molecules.  相似文献   
50.
Kubiak RJ  Yue X  Hondal RJ  Mihai C  Tsai MD  Bruzik KS 《Biochemistry》2001,40(18):5422-5432
Phosphatidylinositol-specific phospholipase C (PI-PLC) catalyzes the cleavage of the P-O bond in phosphatidylinositol via intramolecular nucleophilic attack of the 2-hydroxyl group of inositol on the phosphorus atom. Our earlier stereochemical and site-directed mutagenesis studies indicated that this reaction proceeds by a mechanism similar to that of RNase A, and that the catalytic site of PI-PLC consists of three major components analogous to those observed in RNase A, the His32 general base, the His82 general acid, and Arg69 acting as a phosphate-activating residue. In addition, His32 is associated with Asp274 in forming a catalytic triad with inositol 2-hydroxyl, and His82 is associated with Asp33 in forming a catalytic diad. The focus of this work is to provide a global view of the mechanism, assess cooperation between various catalytic residues, and determine the origin of enzyme activation by the hydrophobic leaving group. To this end, we have investigated kinetic properties of Arg69, Asp33, and His82 mutants with phosphorothioate substrate analogues which feature leaving groups of varying hydrophobicity and pK(a). Our results indicate that interaction of the nonbridging pro-S oxygen atom of the phosphate group with Arg69 is strongly affected by Asp33, and to a smaller extent by His82. This result in conjunction with those obtained earlier can be rationalized in terms of a novel, dual-function triad comprised of Arg69, Asp33, and His82 residues. The function of this triad is to both activate the phosphate group toward the nucleophilic attack and to protonate the leaving group. In addition, Asp33 and His82 mutants displayed much smaller degrees of activation by the fatty acid-containing leaving group as compared to the wild-type (WT) enzyme, and the level of activation was significantly reduced for substrates featuring the leaving group with low pK(a) values. These results strongly suggest that the assembly of the above three residues into the fully catalytically competent triad is controlled by the hydrophobic interactions of the enzyme with the substrate leaving group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号