首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
  2011年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   5篇
  2002年   5篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
排序方式: 共有40条查询结果,搜索用时 31 毫秒
21.
22.
We examined the effects of chest wall strapping (CWS) on the response to inhaled methacholine (MCh) and the effects of deep inspiration (DI). Eight subjects were studied on 1 day with MCh inhaled without CWS (CTRL), 1 day with MCh inhaled during CWS (CWSon/on), and 1 day with MCh inhaled during temporary removal of CWS (CWSoff/on). On the CWSon/on day, MCh caused greater increases in pulmonary resistance, upstream resistance, dynamic elastance, residual volume, and greater decreases in maximal expiratory flow than on the CTRL day. On the CWSoff/on day, the changes in these parameters with MCh were not different from the CTRL day. Six of the subjects were again studied using the same protocol on CTRL and CWSon/on days, except that, on a third day, MCh was given after applying the CWS, but the measurements before and after the inhalation were made without CWS (CWSon/off). The latter sequence was associated with more severe airflow obstruction than during CTRL, but less than with CWSon/on. The bronchodilator effects of a DI were blunted when CWS was applied during measurements (CWSon/on and CWSoff/on) but not after it was removed (CWSon/off). We conclude that CWS is capable of increasing airway responsiveness only when it is applied during the inhalation of the constrictor agent. We speculate that breathing at low lung volumes induced by CWS enhances airway narrowing because the airway smooth muscle is adapted at a length at which the contractile apparatus is able to generate a force greater than normal.  相似文献   
23.
Gas transport during high-frequency ventilation   总被引:1,自引:0,他引:1  
  相似文献   
24.
The relationship between airway responsiveness to methacholine and inflammatory cells in bronchoalveolar lavage (BAL) was determined in patients with history of rhinitis and/or mild bronchial asthma either at baseline (10 patients) or 3-4 h after allergen inhalation challenge (11 patients). At baseline, airway responsiveness did not correlate with any BAL cell population. When data obtained after allergen challenge were included in the analysis, 44% of the variability of airway responsiveness was explained by a multiple regression model with BAL eosinophils as a directly correlated (P = 0.002) independent variable and with BAL macrophages as an inversely correlated (P = 0.045) independent variable. Changes in airway responsiveness after allergen challenge were predicted (82% of variance explained) by a model with BAL eosinophils and BAL lymphocytes as directly correlated (P = 0.0002 and P = 0.03, respectively) independent variables. We conclude that, in stable asymptomatic asthma, baseline airway responsiveness does not correlate with the presence in the airways of inflammatory and immunoeffector cells that can be recovered by BAL. Nevertheless the allergen-induced increase in airway responsiveness is associated with an influx of eosinophils and lymphocytes in the bronchial lumen.  相似文献   
25.
Two groups of subjects were studied: one with (group 1: 5 healthy and 4 mildly asthmatic subjects) and another without (group 2:9 moderately and severely asthmatic subjects) a plateau of response to methacholine (MCh). We determined the effect of deep inhalation by comparing expiratory flows at 40% of forced vital capacity from maximal and partial flow-volume curves (MEF40M/P) and the quasi-static transpulmonary pressure-volume (Ptp-V) area. In group 1, MEF40M/P increased from 1.58 +/- 0.23 (SE) at baseline up to a maximum of 3.91 +/- 0.69 after MCh when forced expiratory volume in 1 s (FEV1) was decreased on plateau by 24 +/- 2%. The plateau of FEV1 was always paralleled by a plateau of MEF40M/P. In group 2, MEF40 M/P increased from 1.58 +/- 0.10 at baseline up to a maximum of 3.48 +/- 0.26 after MCh when FEV1 was decreased by 31 +/- 3% and then decreased to 2.42 +/- 0.24 when FEV1 was decreased by 46 +/- 2%. Ptp-V area was similar in the two groups at baseline yet was increased by 122 +/- 9% in group 2 and unchanged in group 1 at MCh end point. These findings suggest that the increased maximal response to MCh in asthmatic subjects is associated with an involvement of the lung periphery.  相似文献   
26.
The effects of pharmacological stimulation at different levels of the beta-adrenoceptor (AR) pathway, including the receptor, the receptor-coupled Gs protein, and adenylyl cyclase, were studied by simultaneous measurements of acetylcholine (ACh) release and isometric force evoked by electric stimulation in isolated bovine trachealis. The beta-AR agonists isoproterenol (10-6 and 10-5 M) and salbutamol (10-7 to 10-5 M) significantly attenuated both ACh release and contractile force. Forskolin, at 10-6 M, significantly increased ACh release without effect on contractile force, whereas at 10-5 M it increased ACh release but significantly decreased force. Activation of Gs protein by cholera toxin (10 microg/ml) significantly attenuated both ACh release and contractile force, but its effect on ACh release was abolished by calcium-activated potassium (KCa)-channel blocker iberiotoxin (10-7 M). The KCa-channel opener NS-1619 (10-4 M) attenuated significantly both ACh release and contractile force. It is concluded that beta-AR agonists attenuate cholinergic neurotransmission in isolated bovine trachealis model by a mechanism not involving cAMP but KCa channels.  相似文献   
27.
We hypothesized that an altered effect of lung inflation on airway caliber may in part explain the isolated volume response to bronchodilators, i.e., an increase of forced vital capacity (FVC) without change in 1-s forced expiratory volume (FEV(1)). Small-airway caliber was measured by high-resolution computed tomography at functional residual capacity and total lung capacity in five chronic obstructive pulmonary disease patients with an isolated increase of FVC (FVC responders) and five with an increase of both FVC and FEV(1) (FVC-FEV(1) responders) after inhalation of salbutamol. In FVC-FEV(1) responders, the airway diameter increased with the cube root of increase in lung volume but was unchanged or even decreased in four of five FVC responders. FVC responders had more severe emphysema, as inferred from lung function and imaging studies, than FVC-FEV(1) responders. We speculate that longitudinal traction or space competition (Verbeken EK, Cauberghs M, and Van de Woestijne KP, J Appl Physiol 81: 2468-2480, 1996) are possible underlying mechanisms. We conclude that the isolated volume response to bronchodilators is associated with severe emphysema and likely results from an altered effect of lung inflation on airway caliber.  相似文献   
28.
During dynamic hyperinflation with induced bronchoconstriction, there is a reduction in lung elastic recoil at constant lung volume (R. Pellegrino, O. Wilson, G. Jenouri, and J. R. Rodarte. J. Appl. Physiol. 81: 964-975, 1996). In the present study, lung elastic recoil at control end inspiration was measured in normal subjects in a volume displacement plethysmograph before and after voluntary increases in mean lung volume, which were achieved by one tidal volume increase in functional residual capacity (FRC) with constant tidal volume and by doubling tidal volume with constant FRC. Lung elastic recoil at control end inspiration was significantly decreased by approximately 10% within four breaths of increasing FRC. When tidal volume was doubled, the decrease in computed lung recoil at control end inspiration was not significant. Because voluntary increases of lung volume should not produce airway closure, we conclude that stress relaxation was responsible for the decrease in lung recoil.  相似文献   
29.
We determined the dose-response curves to inhaled methacholine (MCh) in 16 asthmatic and 8 healthy subjects with prohibition of deep inhalations (DIs) and with 5 DIs taken after each MCh dose. Flow was measured on partial expiratory flow-volume curves at an absolute lung volume (plethysmographically determined) equal to 25% of control forced vital capacity (FVC). Airway inflammation was assessed in asthmatic subjects by analysis of induced sputum. Even when DIs were prohibited, the dose of MCh causing a 50% decrease in forced partial flow at 25% of control FVC (PD(50)MCh) was lower in asthmatic than in healthy subjects (P < 0.0001). In healthy but not in asthmatic subjects, repeated DIs significantly decreased the maximum response to MCh [from 90 +/- 4 to 62 +/- 8 (SD) % of control, P < 0.001], increased PD(50)MCh (P < 0.005), without affecting the dose causing 50% of maximal response. In asthmatic subjects, neither PD(50)MCh when DIs were prohibited nor changes in PD(50)MCh induced by DIs were significantly correlated with inflammatory cell numbers or percentages in sputum. We conclude that 1) even when DIs are prohibited, the responsiveness to MCh is greater in asthmatic than in healthy subjects; 2) repeated DIs reduce airway responsiveness in healthy but not in asthmatic subjects; and 3) neither airway hyperresponsiveness nor the inability of DIs to relax constricted airways in asthmatic subjects is related to the presence of inflammatory cells in the airways.  相似文献   
30.
This study investigated the relationships between pathological changes in small airways (<6 mm perimeter) and lung function in 22 nonasthmatic subjects (20 smokers) undergoing lung resection for peripheral lesions. Preoperative pulmonary function tests revealed airway obstruction [ratio of forced expiratory volume in 1 s to forced vital capacity (FEV1/FVC) < 70%] in 12 subjects and normal lung function in 10. When all subjects were considered together, total airway wall thickness was significantly correlated with FEV1/FVC (r2 = 0.25), reactivity to methacholine (r2 = 0.26), and slope of linear regression of FVC against FEV1 values recorded during the methacholine challenge (r2 = 0.56). Loss of peribronchiolar alveolar attachments was significantly associated (r2 = 0.25) with a bronchoconstrictor effect of deep inhalation, as assessed from a maximal-to-partial expiratory flow ratio <1, but not with airway responses to methacholine. No significant correlation was found between airway smooth muscle thickness and lung function measurements. In conclusion, this study suggests that thickening of the airway wall is a major mechanism for airway closure, whereas loss of airway-to-lung interdependence may contribute to the bronchoconstrictor effect of deep inhalation in the transition from normal lung function to airway obstruction in nonasthmatic smokers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号