首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7720篇
  免费   517篇
  国内免费   3篇
  2023年   41篇
  2022年   73篇
  2021年   182篇
  2020年   109篇
  2019年   128篇
  2018年   174篇
  2017年   191篇
  2016年   269篇
  2015年   426篇
  2014年   441篇
  2013年   523篇
  2012年   629篇
  2011年   534篇
  2010年   354篇
  2009年   320篇
  2008年   403篇
  2007年   446篇
  2006年   383篇
  2005年   358篇
  2004年   341篇
  2003年   318篇
  2002年   298篇
  2001年   91篇
  2000年   52篇
  1999年   90篇
  1998年   83篇
  1997年   64篇
  1996年   51篇
  1995年   59篇
  1994年   54篇
  1993年   57篇
  1992年   48篇
  1991年   51篇
  1990年   55篇
  1989年   34篇
  1988年   37篇
  1987年   16篇
  1986年   32篇
  1985年   28篇
  1984年   29篇
  1983年   22篇
  1982年   28篇
  1981年   27篇
  1980年   14篇
  1979年   18篇
  1977年   13篇
  1976年   20篇
  1975年   13篇
  1974年   22篇
  1970年   16篇
排序方式: 共有8240条查询结果,搜索用时 15 毫秒
991.
Copy number variations (CNVs) have been shown to contribute substantially to disease susceptibility in several inherited diseases including cancer. We conducted a genome-wide search for CNVs in blood-derived DNA from 79 individuals (62 melanoma patients and 17 spouse controls) of 30 high-risk melanoma-prone families without known segregating mutations using genome-wide comparative genomic hybridization (CGH) tiling arrays. We identified a duplicated region on chromosome 4q13 in germline DNA of all melanoma patients in a melanoma-prone family with three affected siblings. We confirmed the duplication using quantitative PCR and a custom-made CGH array design spanning the 4q13 region. The duplicated region contains 10 genes, most of which encode CXC chemokines. Among them, CXCL1 (melanoma growth-stimulating activity α) and IL8 (interleukin 8) have been shown to stimulate melanoma growth in vitro and in vivo. Our data suggest that the alteration of CXC chemokine genes may confer susceptibility to melanoma.  相似文献   
992.
993.
994.
Hemocyanins are giant oxygen transport proteins found in the hemolymph of several invertebrate phyla. They constitute giant multimeric molecules whose size range up to that of cell organelles such as ribosomes or even small viruses. Oxygen is reversibly bound by hemocyanins at binuclear copper centers. Subunit interactions within the multisubunit hemocyanin complex lead to diverse allosteric effects such as the highest cooperativity for oxygen binding found in nature. Crystal structures of a native hemocyanin oligomer larger than a hexameric substructure have not been published until now. We report for the first time growth and preliminary analysis of crystals of the 24-meric hemocyanin (MW = 1.8 MDa) of emperor scorpion (Pandinus imperator), which diffract to a resolution of 6.5 Å. The crystals are monoclinc with space group C 1 2 1 and cell dimensions a = 311.61 Å, b = 246.58 Å and c = 251.10 Å (α = 90.00°, β = 90.02°, γ = 90.00°). The asymmetric unit contains one molecule of the 24-meric hemocyanin and the solvent content of the crystals is 56%. A preliminary analysis of the hemocyanin structure reveals that emperor scorpion hemocyanin crystallizes in the same oxygenated conformation, which is also present in solution as previously shown by cryo-EM reconstruction and small angle x-ray scattering experiments.  相似文献   
995.
996.
Tetrahydro-β-carboline derivatives (THBCs) have been identified as a class of potent Type-5 Phosphodiesterase (PDE5) inhibitors, showing benefits for the treatment of erectile dysfunction and also bearing anticancer properties. A computational strategy based on molecular docking studies, followed by docking-based Comparative Molecular Fields Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA), has been used to elucidate the atomic details of the PDE5/THBC interactions and to identify the most important features impacting the THBC PDE5 inhibitory activity. The final CoMSIA model resulted to be the more predictive, showing r(ncv)(2) = 0.96, r(cv)(2) = 0.688, SEE = 0.248, F = 104.800, and r(2)(pred) = 0.78. The results allowed us to obtain useful information for the design of new THBC analogues, potentially acting as PDE5 inhibitors, and to predict their potency prior to synthesis.  相似文献   
997.
ABSTRACT: BACKGROUND: Although early diagnosis and prompt treatment is an important strategy for control of malaria, using fever to initiate presumptive treatment with expensive artemisinin combination therapy is a major challenge; particularly in areas with declining burden of malaria. This study was conducted using community-owned resource persons (CORPs) to provide early diagnosis and treatment of malaria, and collect data for estimation of malaria burden in four villages of Korogwe district, north-eastern Tanzania. METHODS: In 2006, individuals with history of fever within 24 hours or fever (axillary temperature [greater than or equal to]37.5degreesC) at presentation were presumptively treated using sulphadoxine/pyrimethamine. Between 2007 and 2010, individuals aged five years and above, with positive rapid diagnostic tests (RDTs) were treated with artemether/lumefantrine (AL) while under-fives were treated irrespective of RDT results. Reduction in anti-malarial consumption was determined by comparing the number of cases that would have been presumptively treated and those that were actually treated based on RDTs results. Trends of malaria incidence and slide positivity rates were compared between lowlands and highlands. RESULTS: Of 15,729 cases attended, slide positivity rate was 20.4% and declined by >72.0% from 2008, reaching <10.0% from 2009 onwards; and the slide positivity rates were similar in lowlands and highlands from 2009 onwards. Cases with fever at presentation declined slightly, but remained at >40.0% in under-fives and >20.0% among individuals aged five years and above. With use of RDTs, cases treated with AL decreased from <58.0% in 2007 to <11.0% in 2010 and the numbers of adult courses saved were 3,284 and 1,591 in lowlands and highlands respectively. Malaria incidence declined consistently from 2008 onwards; and the highest incidence of malaria shifted from children aged <10 years to individuals aged 10-19 years from 2009. CONCLUSIONS: With basic training, supervision and RDTs, CORPs successfully provided early diagnosis and treatment and reduced consumption of anti-malarials. Progressively declining malaria incidence and slide positivity rates suggest that all fever cases should be tested with RDTs before treatment. Data collected by CORPs was used to plan phase 1b MSP3 malaria vaccine trial and will be used for monitoring and evaluation of different health interventions. The current situation indicates that there is a remarkable changing pattern of malaria and these areas might be moving from control to pre-elimination levels.  相似文献   
998.
A dominant aptamer loop structure from a library of nearly 100 candidate aptamer sequences developed against immobilized 25‐hydroxyvitamin D3 (calcidiol) was converted into a 5′‐TYE 665 and 3′‐Iowa black‐labelled aptamer beacon. The aptamer beacon exhibited a mild 'lights on' reaction in buffer as a function of increasing concentrations of several vitamin D analogues and metabolites, with a limit of detection of approximately 200 ng/mL, and was not specific for any particular congener. In 10% or 50% human serum, the same aptamer beacon inverted its fluorescence behaviour to become a more intense 'lights off' reaction with an improved limit of detection in the range 4–16 ng/mL. We hypothesized that this drastic change in fluorescence behaviour was due to the presence of creatinine and urea in serum, which might destabilize the quenched beacon, causing an increase in fluorescence followed by decreasing fluorescence as a function of vitamin D concentrations that may bind and quench increasingly greater fractions of the denatured beacons. However, the results of several control experiments in the presence of physiological or greater concentrations of creatinine and urea, alone or combined in buffer, failed to produce the beacon fluorescence inversion. Other possible mechanistic hypotheses are also discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
999.
There is an immediate need for improved methods to systematically and precisely quantify large sets of peptides in complex biological samples. To date protein quantification in biological samples has been routinely performed on triple quadrupole instruments operated in selected reaction monitoring mode (SRM), and two major challenges remain. Firstly, the number of peptides to be included in one survey experiment needs to be increased to routinely reach several hundreds, and secondly, the degree of selectivity should be improved so as to reliably discriminate the targeted analytes from background interferences. High resolution and accurate mass (HR/AM) analysis on the recently developed Q-Exactive mass spectrometer can potentially address these issues. This instrument presents a unique configuration: it is constituted of an orbitrap mass analyzer equipped with a quadrupole mass filter as the front-end for precursor ion mass selection. This configuration enables new quantitative methods based on HR/AM measurements, including targeted analysis in MS mode (single ion monitoring) and in MS/MS mode (parallel reaction monitoring). The ability of the quadrupole to select a restricted m/z range allows one to overcome the dynamic range limitations associated with trapping devices, and the MS/MS mode provides an additional stage of selectivity. When applied to targeted protein quantification in urine samples and benchmarked with the reference SRM technique, the quadrupole-orbitrap instrument exhibits similar or better performance in terms of selectivity, dynamic range, and sensitivity. This high performance is further enhanced by leveraging the multiplexing capability of the instrument to design novel acquisition methods and apply them to large targeted proteomic studies for the first time, as demonstrated on 770 tryptic yeast peptides analyzed in one 60-min experiment. The increased quality of quadrupole-orbitrap data has the potential to improve existing protein quantification methods in complex samples and address the pressing demand of systems biology or biomarker evaluation studies.Shotgun proteomics has emerged over the past decade as the most effective method for the qualitative study of complex proteomes (i.e., the identification of the protein content), as illustrated by a wealth of publications (1, 2). In this approach, after enzymatic digestion of the proteins, the generated peptides are analyzed by means of liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)1 in a data dependent mode. However, the complexity of the digested proteomes under investigation and the wide range of protein abundances limit the reproducibility and the sensitivity of this stochastic approach (3), which is critical if one aims at the systematic quantification of the proteins. Thus, alternative MS approaches have emerged for the systematic quantitative study of complex proteomes, the MS-based targeted proteomics (4). In this hypothesis-driven approach, only specific subsets of analytes (a few targeted peptides used as surrogates for the proteins of interest) are selectively measured in predefined m/z ranges and retention time windows, which overcomes the bias toward most abundant compounds commonly observed with shotgun proteomics. When applied to complex biological samples—for example, bodily fluids such as urine or plasma—targeted proteomics requires high performance instruments allowing measurements of a wide dynamic range (many orders of magnitude), with high sensitivity in order to detect peptides in the low amol range and sufficient selectivity to cope with massive biochemical background (5). Selected reaction monitoring (SRM) on triple quadrupole (6) or triple quadrupole-linear ion trap mass spectrometers (7) has emerged as a means to conduct such analyses (8). Initially applied in the MS analysis of small molecules (9, 10), SRM has gradually emerged as the reference quantitative technique for analyzing proteins (or peptides) in biological samples. When coupled with the isotope dilution strategy (11, 12), this very effective technique allows the precise quantification of proteins (1318). However, despite the increased selectivity provided by the two-stage mass filtering of SRM (at the precursor and fragment ion levels), the low resolution of mass selection does not allow the systematic removal of interferences (19, 20). Moreover, in proteomics, the biochemical background has a composition similar to that of the analytes of interest, which remains a major hurdle limiting the sensitivity of assays, especially in a bodily fluid matrix. High resolution/accurate mass (HR/AM) analysis represents a promising alternative approach that might more efficiently distinguish the compounds of interest from interferences in targeted proteomics. Such analyses can be conducted on orbitrap-based mass spectrometers because of their high sensitivity and high mass accuracy capabilities (21). The introduction of the benchtop standalone orbitrap mass spectrometer (Exactive) (22) further strengthened the attractiveness of the approach, especially in the field of small molecule analysis (23, 24). However, as quantification using trapping devices intrinsically suffers from a limited dynamic range because of the overall ion capacity, the complexity of biological samples remains very challenging even with the HR/AM approach (25). Targeted protein analysis with triple quadrupole mass spectrometers keeps on showing significant superiority for such samples.2 The recently developed quadrupole-orbitrap mass spectrometer (Q-Exactive) can potentially address this issue.3 It is constituted of an orbitrap mass analyzer equipped with a quadrupole mass filter as the front-end for precursor ion mass selection (26, 27). This configuration combines advantages of triple quadrupole instruments for mass filtering and orbitrap-based mass spectrometers for HR/AM measurement. The ability of the instrument to select a restricted m/z range or (sequentially) a small number of precursor ions offers new opportunities for quantification in complex samples by selectively enriching low abundant components. The resulting data, acquired in the so-called single ion monitoring (SIM) mode, fully benefit from the trapping capability while keeping a high acquisition rate as a result of the fast switching time between targeted precursor ions of the quadrupole. Although this mode of data acquisition is possible with a configuration combining a linear ion trap with the orbitrap (as in the LTQ-Orbitrap mass spectrometer), its effectiveness is far more limited in this case. The quadrupole-orbitrap configuration presents significant benefits by selectively isolating a narrow population of precursor ions. Other features of the instrument include its multiplexed trapping capability (26) using either the C-trap or the higher energy collisional dissociation (HCD) cell (28, 29), which opens new avenues in the design of innovative acquisition methods for quantification studies. For the first time, a panel of acquisition methods is designed and applied to targeted quantification at the MS and MS/MS levels. In the latter case, the simultaneous monitoring of multiple MS/MS fragmentation channels, also called parallel reaction monitoring4 (PRM), is particularly promising for quantifying large sets of peptides with increased selectivity.  相似文献   
1000.
The consequences of deprivation of the molecular chaperone Hsp104 in the fungal pathogen Candida albicans were investigated. Mutants lacking HSP104 became hypersusceptible to lethally high temperatures, similarly to the corresponding mutants of Saccharomyces cerevisiae, whereas normal susceptibility was restored upon reintroduction of the gene. By use of a strain whose only copy of HSP104 is an ectopic gene under the control of a tetracycline-regulated promoter, expression of Hsp104 prior to the administration of heat shock could be demonstrated to be sufficient to confer protection from the subsequent temperature increase. This result points to a key role for Hsp104 in orchestrating the cell response to elevated temperatures. Despite their not showing evident growth or morphological defects, biofilm formation by cells lacking HSP104 proved to be defective in two established in vitro models that use polystyrene and polyurethane as the substrates. Biofilms formed by the wild-type and HSP104-reconstituted strains showed patterns of intertwined hyphae in the extracellular matrix. In contrast, biofilm formed by the hsp104Δ/hsp104Δ mutant showed structural defects and appeared patchy and loose. Decreased virulence of the hsp104Δ/hsp104Δ mutant was observed in the Caenorhabditis elegans infection model, in which high in vivo temperature does not play a role. In agreement with the view that stress responses in fungal pathogens may have evolved to provide niche-specific adaptation to environmental conditions, these results provide an indication of a temperature-independent role for Hsp104 in support of Candida albicans virulence, in addition to its key role in governing thermotolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号