全文获取类型
收费全文 | 7693篇 |
免费 | 516篇 |
国内免费 | 3篇 |
专业分类
8212篇 |
出版年
2023年 | 48篇 |
2022年 | 94篇 |
2021年 | 181篇 |
2020年 | 108篇 |
2019年 | 128篇 |
2018年 | 173篇 |
2017年 | 190篇 |
2016年 | 268篇 |
2015年 | 420篇 |
2014年 | 435篇 |
2013年 | 522篇 |
2012年 | 626篇 |
2011年 | 531篇 |
2010年 | 353篇 |
2009年 | 317篇 |
2008年 | 402篇 |
2007年 | 442篇 |
2006年 | 384篇 |
2005年 | 358篇 |
2004年 | 343篇 |
2003年 | 317篇 |
2002年 | 298篇 |
2001年 | 87篇 |
2000年 | 54篇 |
1999年 | 89篇 |
1998年 | 83篇 |
1997年 | 62篇 |
1996年 | 51篇 |
1995年 | 59篇 |
1994年 | 54篇 |
1993年 | 55篇 |
1992年 | 49篇 |
1991年 | 50篇 |
1990年 | 53篇 |
1989年 | 33篇 |
1988年 | 36篇 |
1987年 | 16篇 |
1986年 | 30篇 |
1985年 | 28篇 |
1984年 | 29篇 |
1983年 | 19篇 |
1982年 | 28篇 |
1981年 | 24篇 |
1980年 | 14篇 |
1979年 | 17篇 |
1977年 | 12篇 |
1976年 | 19篇 |
1975年 | 13篇 |
1974年 | 21篇 |
1970年 | 16篇 |
排序方式: 共有8212条查询结果,搜索用时 15 毫秒
71.
Stiebler R Soares JB Timm BL Silva JR Mury FB Dansa-Petretski M Oliveira MF 《Journal of bioenergetics and biomembranes》2011,43(1):93-99
Blood-feeding organisms digest hemoglobin, releasing large quantities of heme inside their digestive tracts. Free heme is
very toxic, and these organisms have evolved several mechanisms to protect against its deleterious effects. One of these adaptations
is the crystallization of heme into the dark-brown pigment hemozoin (Hz). Here we review the process of Hz formation, focusing
on organisms other than Plasmodium that have contributed to a better understanding of heme crystallization. Hemozoin has been found in several distinct classes
of organisms including protozoa, helminths and insects and Hz formation is the predominant form of heme detoxification. The
available evidence indicates that amphiphilic structures such as phospholipid membranes and lipid droplets accompanied by
specific proteins play a major role in heme crystallization. Because this process is specific to a number of blood-feeding
organisms and absent in their hosts, Hz formation is an attractive target for the development of novel drugs to control illnesses
associated with these hematophagous organisms. 相似文献
72.
Lupi A Messana I Denotti G Schininà ME Gambarini G Fadda MB Vitali A Cabras T Piras V Patamia M Cordaro M Giardina B Castagnola M 《Proteomics》2003,3(4):461-467
Human salivary cystatins, five major (S, S1, S2, SA, SN) and two minor (C and D), are multifunctional proteins playing a different role in the oral environment. Salivary cystatin SN is able to effectively inhibit lysosomal cathepsins B, C, H and L and cystatin SA inhibits cathepsins C and L in vitro. These activities suggest, particularly for cystatin SN, an important role in the control of proteolytic events in vivo. Differently, cystatins S are involved, together with statherin, in the mineral balance of the tooth. Due to their distinct role, a reliable method for identification and quantification of the different cystatins, as well as of possible truncated and derived forms, could be helpful for the assessment of the status of the oral cavity. To this purpose high-performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI MS) was applied to the analysis of human saliva obtained from healthy subjects. All known salivary cystatins, with the exception of cystatin C, were detected. Strong evidence was also obtained for the presence in saliva of post-translational modified isoforms of cystatins, which may be related to donor habits. Cystatin SN and cystatins S, S1 and S2 were well separated by HPLC-ESI MS coupling from other components and thus this approach can be successfully applied to their quantification. 相似文献
73.
La Rocca G Shi B Audia A Ferrari-Amorotti G Mellert HS Calabretta B McMahon SB Sepp-Lorenzino L Baserga R 《Experimental cell research》2011,(4):488-495
MicroRNA145 (miR145), a tumor suppressor miR, has been reported to inhibit growth of human cancer cells, to induce differentiation and to cause apoptosis, all conditions that result in growth arrest. In order to clarify the functional effects of miR145, we have investigated its expression in diverse conditions and different cell lines. Our results show that miR145 levels definitely increase in differentiating cells and also in growth-arrested cells, even in the absence of differentiation. Increased expression during differentiation sometimes occurs as a late event, suggesting that miR145 could be required either early or late during the differentiation process. 相似文献
74.
Hamdan FF Gauthier J Araki Y Lin DT Yoshizawa Y Higashi K Park AR Spiegelman D Dobrzeniecka S Piton A Tomitori H Daoud H Massicotte C Henrion E Diallo O;SD Group Shekarabi M Marineau C Shevell M Maranda B Mitchell G Nadeau A D'Anjou G Vanasse M Srour M Lafrenière RG Drapeau P Lacaille JC Kim E Lee JR Igarashi K Huganir RL Rouleau GA Michaud JL 《American journal of human genetics》2011,(3):1427-316
Little is known about the genetics of nonsyndromic intellectual disability (NSID). We hypothesized that de novo mutations (DNMs) in synaptic genes explain an important fraction of sporadic NSID cases. In order to investigate this possibility, we sequenced 197 genes encoding glutamate receptors and a large subset of their known interacting proteins in 95 sporadic cases of NSID. We found 11 DNMs, including ten potentially deleterious mutations (three nonsense, two splicing, one frameshift, four missense) and one neutral mutation (silent) in eight different genes. Calculation of point-substitution DNM rates per functional and neutral site showed significant excess of functional DNMs compared to neutral ones. De novo truncating and/or splicing mutations in SYNGAP1, STXBP1, and SHANK3 were found in six patients and are likely to be pathogenic. De novo missense mutations were found in KIF1A, GRIN1, CACNG2, and EPB41L1. Functional studies showed that all these missense mutations affect protein function in cell culture systems, suggesting that they may be pathogenic. Sequencing these four genes in 50 additional sporadic cases of NSID identified a second DNM in GRIN1 (c.1679_1681dup/p.Ser560dup). This mutation also affects protein function, consistent with structural predictions. None of these mutations or any other DNMs were identified in these genes in 285 healthy controls. This study highlights the importance of the glutamate receptor complexes in NSID and further supports the role of DNMs in this disorder. 相似文献
75.
Schoehn G Vellieux FM Asunción Durá M Receveur-Bréchot V Fabry CM Ruigrok RW Ebel C Roussel A Franzetti B 《The Journal of biological chemistry》2006,281(47):36327-36337
Cellular proteolysis involves large oligomeric peptidases that play key roles in the regulation of many cellular processes. The cobalt-activated peptidase TET1 from the hyperthermophilic Archaea Pyrococcus horikoshii (PhTET1) was found to assemble as a 12-subunit tetrahedron and as a 24-subunit octahedral particle. Both quaternary structures were solved by combining x-ray crystallography and cryoelectron microscopy data. The internal organization of the PhTET1 particles reveals highly self-compartmentalized systems made of networks of access channels extended by vast catalytic chambers. The two edifices display aminopeptidase activity, and their organizations indicate substrate navigation mechanisms different from those described in other large peptidase complexes. Compared with the tetrahedron, the octahedron forms a more expanded hollow structure, representing a new type of giant peptidase complex. PhTET1 assembles into two different quaternary structures because of quasi-equivalent contacts that previously have only been identified in viral capsids. 相似文献
76.
Chloroplast-to-chromoplast transitions during fruit ripening require massive transformation of the plastid internal membrane structure as the photosynthetic apparatus is disassembled. Early Light-Inducible Proteins (ELIPs) are known to accumulate in chloroplasts during thylakoid biogenesis and under stressful conditions. To determine if ELIP may also play a role in thylakoid disassembly during the chloroplast-to-chromoplast transition, ELIP mRNA expression was measured in tomato, Lycopersicon esculentum Mill. cv. Rutgers. An EST clone was identified in the Tomato Genome Project/Solanaceae Genomics Network database that has high sequence similarity with the amino acid sequence of Arabidopsis ELIP1 and ELIP2. It has complete identity in the two conserved regions of the protein. Genomic Southern blots indicate that the gene is a single copy in tomato. The genomic sequence shows the three-exon structure typical of ELIP sequences from other species. mRNA for this gene is barely detectable on northern blots from etiolated seedlings, but transiently accumulates to high levels 2 h after transfer to the light. Greenhouse-grown tomatoes were used to measure ELIP mRNA accumulation during fruit development and ripening. Tomato ELIP mRNA is detectable in all stages of fruit ripening, but is most abundant in the breaker/turning stage of development. A survey of tomato EST databases revealed that ELIP cDNA is also relatively abundant in developing flowers, which contain yellow chromoplasts. Combined, these results suggest that ELIP may play a newly-recognized role in the chloroplast-to-chromoplast transition process. 相似文献
77.
Verde C Howes BD De Rosa MC Raiola L Smulevich G Williams R Giardina B Parisi E Di Prisco G 《Protein science : a publication of the Protein Society》2004,13(10):2766-2781
The suborder Notothenioidei dominates the Antarctic ichthyofauna. The non-Antarctic monotypic family Pseudaphritidae is one of the most primitive families. The characterization of the oxygen-transport system of euryhaline Pseudaphritis urvillii is herewith reported. Similar to most Antarctic notothenioids, this temperate species has a single major hemoglobin (Hb 1, over 95% of the total). Hb 1 has strong Bohr and Root effects. It shows two very uncommon features in oxygen binding: At high pH values, the oxygen affinity is exceptionally high compared to other notothenioids, and subunit cooperativity is modulated by pH in an unusual way, namely the curve of the Hill coefficient is bell-shaped, with values approaching 1 at both extremes of pH. Molecular modeling, electronic absorption and resonance Raman spectra have been used to characterize the heme environment of Hb 1 in an attempt to explain these features, particularly in view of some potentially important nonconservative replacements found in the primary structure. Compared to human HbA, no major changes were found in the structure of the proximal cavity of the alpha-chain of Hb 1, although an altered distal histidyl and heme position was identified in the models of the beta-chain, possibly facilitated by a more open heme pocket due to reduced steric constraints on the vinyl substituent groups. This conformation may lead to the hemichrome form identified by spectroscopy in the Met state, which likely fulfils a potentially important physiological role. 相似文献
78.
Scatena R Bottoni P Martorana GE Ferrari F De Sole P Rossi C Giardina B 《Biochemical and biophysical research communications》2004,319(3):967-973
Peroxisome proliferator activated receptors (PPARs) are a class of nuclear receptors involved in lipid and glucidic metabolism, immune regulation, and cell differentiation. Many of their biological activities have been studied by using selective synthetic activators (mainly fibrates and thiazolidinediones) which have been already employed in therapeutic protocols. Both kinds of drugs, however, showed pharmacotoxicological profiles, which cannot be ascribed by any means to receptor activation. To better understand these non-receptorial or extrareceptorial aspects, the effect of different PPAR-ligands on the metabolic status of human HL-60 cell line has been investigated. At this regard, NMR analysis of cell culture supernatants was accomplished in order to monitor modifications at the level of cell metabolism. Cell growth and chemiluminescence assays were employed to verify cell differentiation. Results showed that all the considered PPAR-ligands, although with different potencies and independently from their PPAR binding specificity, induced a significant derangement of the mitochondrial respiratory chain consisting in a strong inhibition of NADH-cytochrome c reductase activity. This derangement has been shown to be strictly correlated to the adaptive metabolic modifications, as evidenced by the increased formation of lactate and acetate, due to the stimulation of anaerobic glycolysis and fatty acid beta-oxidation. It is worthy noting that the mitochondrial dysfunction appeared also linked to the capacity of any given PPAR-ligand to induce cell differentiation. These data could afford an explanation of biochemical and toxicological aspects related to the therapeutic use of synthetic PPAR-ligands and suggest a revision of PPAR pathophysiologic mechanisms. 相似文献
79.
Background
A variety of human activities have led to the recent global decline of reef-building corals [1], [2]. The ecological, social, and economic value of coral reefs has made them an international conservation priority [2], [3]. The success of Marine Protected Areas (MPAs) in restoring fish populations [4] has led to optimism that they could also benefit corals by indirectly reducing threats like overfishing, which cause coral degradation and mortality [2], [5]. However, the general efficacy of MPAs in increasing coral reef resilience has never been tested.Methodology/Principal Findings
We compiled a global database of 8534 live coral cover surveys from 1969–2006 to compare annual changes in coral cover inside 310 MPAs to unprotected areas. We found that on average, coral cover within MPAs remained constant, while coral cover on unprotected reefs declined. Although the short-term differences between unprotected and protected reefs are modest, they could be significant over the long-term if the effects are temporally consistent. Our results also suggest that older MPAs were generally more effective in preventing coral loss. Initially, coral cover continued to decrease after MPA establishment. Several years later, however, rates of coral cover decline slowed and then stabilized so that further losses stopped.Conclusions/Significance
These findings suggest that MPAs can be a useful tool not only for fisheries management, but also for maintaining coral cover. Furthermore, the benefits of MPAs appear to increase with the number of years since MPA establishment. Given the time needed to maximize MPA benefits, there should be increased emphasis on implementing new MPAs and strengthening the enforcement of existing MPAs. 相似文献80.
Aude Tixier Eric Badel Jerome Franchel Wassim Lakhal Nathalie Leblanc‐Fournier Bruno Moulia Jean‐Louis Julien 《Physiologia plantarum》2014,150(2):225-237
Inter‐organ communication is essential for plants to coordinate development and acclimate to mechanical environmental fluctuations. The aim of this study was to investigate long‐distance signaling in trees. We compared on young poplars the short‐term effects of local flame wounding and of local stem bending for two distal responses: (1) stem primary growth and (2) the expression of mechanoresponsive genes in stem apices. We developed a non‐contact measurement method based on the analysis of apex images in order to measure the primary growth of poplars. The results showed a phased stem elongation with alternating nocturnal circumnutation phases and diurnal growth arrest phases in Populus tremula × alba clone INRA 717‐1B4. We applied real‐time polymerase chain reaction (RT‐PCR) amplifications in order to evaluate the PtaZFP2, PtaTCH2, PtaTCH4, PtaACS6 and PtaJAZ5 expressions. The flame wounding inhibited primary growth and triggered remote molecular responses. Flame wounding induced significant changes in stem elongation phases, coupled with inhibition of circumnutation. However, the circadian rhythm of phases remained unaltered and the treated plants were always phased with control plants during the days following the stress. For bent plants, the stimulated region of the stem showed an increased PtaJAZ5 expression, suggesting the jasmonates may be involved in local responses to bending. No significant remote responses to bending were observed. 相似文献