首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7688篇
  免费   515篇
  国内免费   3篇
  2023年   42篇
  2022年   95篇
  2021年   181篇
  2020年   109篇
  2019年   128篇
  2018年   174篇
  2017年   190篇
  2016年   269篇
  2015年   420篇
  2014年   435篇
  2013年   524篇
  2012年   625篇
  2011年   531篇
  2010年   353篇
  2009年   317篇
  2008年   400篇
  2007年   442篇
  2006年   384篇
  2005年   358篇
  2004年   341篇
  2003年   317篇
  2002年   297篇
  2001年   87篇
  2000年   51篇
  1999年   88篇
  1998年   83篇
  1997年   62篇
  1996年   51篇
  1995年   59篇
  1994年   54篇
  1993年   55篇
  1992年   49篇
  1991年   50篇
  1990年   53篇
  1989年   33篇
  1988年   36篇
  1987年   16篇
  1986年   30篇
  1985年   28篇
  1984年   29篇
  1983年   20篇
  1982年   28篇
  1981年   24篇
  1980年   14篇
  1979年   18篇
  1977年   13篇
  1976年   19篇
  1975年   13篇
  1974年   21篇
  1970年   16篇
排序方式: 共有8206条查询结果,搜索用时 195 毫秒
291.
Bulk heterojunction (BHJ) nonfullerene organic solar cells prepared from sequentially deposited donor and acceptor layers (sq‐BHJ) have recently been shown to be highly efficient, environmentally friendly, and compatible with large area and roll‐to‐roll fabrication. However, the related photophysics at donor‐acceptor interface and the vertical heterogeneity of donor‐acceptor distribution, critical for exciton dissociation and device performance, have been largely unexplored. Herein, steady‐state and time‐resolved optical and electrical techniques are employed to characterize the interfacial trap states. Correlating with the luminescent efficiency of interfacial states and its nonradiative recombination, interfacial trap states are characterized to be about 40% more populated in the sq‐BHJ devices than the as‐cast BHJ (c‐BHJ), which probably limits the device voltage output. Cross‐sectional energy‐dispersive X‐ray spectroscopy and ultraviolet photoemission spectroscopy depth profiling directly visualize the donor–acceptor vertical stratification with a precision of 1–2 nm. From the proposed “needle” model, the high exciton dissociation efficiency is rationalized. This study highlights the promise of sequential deposition to fabricate efficient solar cells, and points toward improving the voltage output and overall device performance via eliminating interfacial trap states.  相似文献   
292.
Silicon (Si) is beneficial to plants since it increases photosynthetic efficiency, and alleviates biotic and abiotic stresses. In the most highly weathered and desilicated soils, plant phytoliths make up the reservoir of bioavailable Si. The regular removal of crop residues, however, substantially decreases this pool. Si supply may therefore be required to sustain continuous cropping. Available Si fertilizers are costly and usually poor in soluble Si. Biochar produced from the pyrolysis of phytolith‐rich biomass is thus a promising alternative Si source for plants. Taking into account the challenges of increasing food demand and environmental concerns, we evaluate the global potential of biochar produced from major crop residues and manures in terms of phytogenic Si (PhSi) supply. Crop residues contribute to 80% of the global production of biomass dry matter (8,201 Tg/year) of which 3,137 Tg/year are potentially available after pyrolysis, giving a potential application rate of 1.7 T ha?1 year?1 for highly weathered soils in the tropics. The potential PhSi supply from crop biochar amounts to 102 Tg Si/year. On its own, rice straws produce 57.7 Tg PhSi/year, accounting for 56.6% of the potential annual PhSi production. The Si release from crop biochar depends on inter altere feedstock type, pyrolysis temperature, soil pH, and buffer capacity. Furthermore, the amplitude of plant Si uptake and mineralomass depends on plant species, soil properties, and processes. These factors interact and can exert a decisive influence on the effectiveness of phytolithic biochar in releasing Si into highly weathered soils. We conclude that the use of phytolithic biochar as a Si fertilizer offers undeniable potential to mitigate desilication and to enhance Si ecological services due to soil weathering and biomass removal. This potential must be explored, as well as the conditions for using biochar in the field.  相似文献   
293.
Understanding and predicting how biological communities respond to climate change is critical for assessing biodiversity vulnerability and guiding conservation efforts. Glacier‐ and snow‐fed rivers are one of the most sensitive ecosystems to climate change, and can provide early warning of wider‐scale changes. These rivers are frequently used for hydropower production but there is minimal understanding of how biological communities are influenced by climate change in a context of flow regulation. This study sheds light on this issue by disentangling structural (water temperature preference, taxonomic composition, alpha, beta and gamma diversities) and functional (functional traits, diversity, richness, evenness, dispersion and redundancy) effects of climate change in interaction with flow regulation in the Alps. For this, we compared environmental and aquatic invertebrate data collected in the 1970s and 2010s in regulated and unregulated alpine catchments. We hypothesized a replacement of cold‐adapted species by warming‐tolerant ones, high temporal and spatial turnover in taxa and trait composition, along with reduced taxonomic and functional diversities in consequence of climate change. We expected communities in regulated rivers to respond more drastically due to additive or synergistic effects between flow regulation and climate change. We found divergent structural but convergent functional responses between free‐flowing and regulated catchments. Although cold‐adapted taxa decreased in both of them, greater colonization and spread of thermophilic species was found in the free‐flowing one, resulting in higher spatial and temporal turnover. Since the 1970s, taxonomic diversity increased in the free flowing but decreased in the regulated catchment due to biotic homogenization. Colonization by taxa with new functional strategies (i.e. multivoltine taxa with small body size, resistance forms, aerial dispersion and reproduction by clutches) increased functional diversity but decreased functional redundancy through time. These functional changes could jeopardize the ability of aquatic communities facing intensification of ongoing climate change or new anthropogenic disturbances.  相似文献   
294.
295.
296.
297.
298.
Balloon-occluded transarterial chemoembolisation (B-TACE) is an intraarterial transcatheter treatment for liver cancer. In B-TACE, an artery-occluding microballoon catheter occludes an artery and promotes collateral circulation for drug delivery to tumours. This paper presents a methodology for analysing the haemodynamics during B-TACE, by combining zero-dimensional and three-dimensional modelling tools. As a proof of concept, we apply the methodology to a patient-specific hepatic artery geometry and analyse two catheter locations. Results show that the blood flow redistribution can be predicted in this proof-of-concept study, suggesting that this approach could potentially be used to optimise catheter location.  相似文献   
299.
Protoporphyrin IX‐triplet state lifetime technique (PpIX‐TSLT) is a method used to measure oxygen (PO2) in human cells. The aim of this study was to assess the technical feasibility and safety of measuring oxygen‐dependent delayed fluorescence of 5‐aminolevulinic acid (ALA)‐induced PpIX during upper gastrointestinal (GI) endoscopy. Endoscopic delayed fluorescence measurements were performed 4 hours after oral administration of ALA in healthy volunteers. The ALA dose administered was 0, 1, 5 or 20 mg/kg. Measurements were performed at three mucosal spots in the gastric antrum, duodenal bulb and descending duodenum with the catheter above the mucosa and while applying pressure to induce local ischemia and monitor mitochondrial respiration. During two endoscopies, measurements were performed both before and after intravenous administration of butylscopolamine. Delayed fluorescence measurements were successfully performed during all 10 upper GI endoscopies. ALA dose of 5 mg/kg showed adequate signal‐to‐noise ratio (SNR) values >20 without side effects. All pressure measurements showed significant prolongation of delayed fluorescence lifetime compared to measurements performed without pressure (P < .001). Measurements before and after administration of butylscopolamine did not differ significantly in the duodenal bulb and descending duodenum. Measurements of oxygen‐dependent delayed fluorescence of ALA‐induced PpIX in the GI tract during upper GI endoscopy are technically feasible and safe.  相似文献   
300.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号