首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17441篇
  免费   1343篇
  国内免费   12篇
  2022年   150篇
  2021年   289篇
  2020年   158篇
  2019年   199篇
  2018年   272篇
  2017年   281篇
  2016年   418篇
  2015年   677篇
  2014年   767篇
  2013年   984篇
  2012年   1165篇
  2011年   1086篇
  2010年   739篇
  2009年   672篇
  2008年   956篇
  2007年   983篇
  2006年   912篇
  2005年   901篇
  2004年   846篇
  2003年   846篇
  2002年   771篇
  2001年   214篇
  2000年   186篇
  1999年   272篇
  1998年   250篇
  1997年   198篇
  1996年   172篇
  1995年   167篇
  1994年   162篇
  1993年   153篇
  1992年   163篇
  1991年   161篇
  1990年   163篇
  1989年   138篇
  1988年   144篇
  1987年   80篇
  1986年   102篇
  1985年   114篇
  1984年   136篇
  1983年   104篇
  1982年   134篇
  1981年   118篇
  1980年   98篇
  1979年   79篇
  1978年   85篇
  1977年   86篇
  1976年   78篇
  1975年   77篇
  1974年   80篇
  1973年   77篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
We have used in vitro genetics to evaluate the function and interactions of the conserved base G8 in the hairpin ribozyme catalytic RNA. Second site revertant selection for a G8X mutant, where X is any of the other three natural nucleobases, yielded a family of second site suppressors of the G8U mutant, but not of G8C or G8A, indicating that only G and U can be tolerated at position 8 of the ribozyme. This result is consistent with recent observations that point to the functional importance of G8 N-1 in the chemistry of catalysis by this ribozyme reaction. Suppression of the G8U mutation was observed when changes were made directly across loop A from the mutated base at substrate position +2 or positions +2 and +3 in combination. The same changes made in the context of the natural G8 sequence resulted in a very large drop in activity. Thus, the G8U mutation results in a change in specificity of the ribozyme from 5'-N / GUC-3' to 5'-N / GCU-3'. The results presented imply that G8 interacts directly with U+2 during catalysis. We propose that this interaction favors the correct positioning of the catalytic determinants of G8. The implications for the folding of the ribozyme and the catalytic mechanism are discussed.  相似文献   
992.
Voltage-gated potassium (Kv) channels are a complex and heterogeneous family of proteins that play major roles in brain and cardiac excitability. Although Kv channels are activated by changes in cell membrane potential, tyrosine phosphorylation of channel subunits can modulate the extent of channel activation by depolarization. We have previously shown that dephosphorylation of Kv2.1 by the nonreceptor-type tyrosine phosphatase PTPepsilon (cyt-PTPepsilon) down-regulates channel activity and counters its phosphorylation and up-regulation by Src or Fyn. In the present study, we identify tyrosine 124 within the T1 cytosolic domain of Kv2.1 as a target site for the activities of Src and cyt-PTPepsilon. Tyr(124) is phosphorylated by Src in vitro; in whole cells, Y124F Kv2.1 is significantly less phosphorylated by Src and loses most of its ability to bind the D245A substrate-trapping mutant of cyt-PTPepsilon. Phosphorylation of Tyr(124) is critical for Src-mediated up-regulation of Kv2.1 channel activity, since Y124F Kv2.1-mediated K(+) currents are only marginally up-regulated by Src, in contrast with a 3-fold up-regulation of wild-type Kv2.1 channels by the kinase. Other properties of Kv2.1, such as expression levels, subcellular localization, and voltage dependence of channel activation, are unchanged in Y124F Kv2.1, indicating that the effects of the Y124F mutation are specific. Together, these results indicate that Tyr(124) is a significant site at which the mutually antagonistic activities of Src and cyt-PTPepsilon affect Kv2.1 phosphorylation and activity.  相似文献   
993.
Measles virus is a negative-sense, single-stranded RNA virus belonging to the Mononegavirales order which comprises several human pathogens such as Ebola, Nipah, and Hendra viruses. The phosphoprotein of measles virus is a modular protein consisting of an intrinsically disordered N-terminal domain (Karlin, D., Longhi, S., Receveur, V., and Canard, B. (2002) Virology 296, 251-262) and of a C-terminal moiety (PCT) composed of alternating disordered and globular regions. We report the crystal structure of the extreme C-terminal domain (XD) of measles virus phosphoprotein (aa 459-507) at 1.8 A resolution. We have previously reported that the C-terminal domain of measles virus nucleoprotein, NTAIL, is intrinsically unstructured and undergoes induced folding in the presence of PCT (Longhi, S., Receveur-Brechot, V., Karlin, D., Johansson, K., Darbon, H., Bhella, D., Yeo, R., Finet, S., and Canard, B. (2003) J. Biol. Chem. 278, 18638-18648). Using far-UV circular dichroism, we show that within PCT, XD is the region responsible for the induced folding of NTAIL. The crystal structure of XD consists of three helices, arranged in an anti-parallel triple-helix bundle. The surface of XD formed between helices alpha2 and alpha3 displays a long hydrophobic cleft that might provide a complementary hydrophobic surface to embed and promote folding of the predicted alpha-helix of NTAIL. We present a tentative model of the interaction between XD and NTAIL. These results, beyond presenting the first measles virus protein structure, shed light both on the function of the phosphoprotein at the molecular level and on the process of induced folding.  相似文献   
994.
The contribution of raft domains to human immunodeficiency virus (HIV) 1 entry was assessed. In particular, we asked whether the CD4 and CCR5 HIV-1 receptors need to associate with sphingolipid-enriched, detergent-resistant membrane domains (rafts) to allow viral entry into primary and T-cell lines. Based on Triton X-100 solubilization and confocal microscopy, CD4 was shown to distribute partially to rafts. In contrast, CCR5 did not associate with rafts and localized in nonraft plasma membrane domains. HIV-1-receptor partitioning remained unchanged upon viral adsorption, suggesting that viral entry probably takes place outside rafts. To directly investigate this possibility, we targeted CD4 to nonraft domains of the membrane by preventing CD4 palmitoylation and interaction with p56(lck). Directed mutagenesis of both targeting signals significantly prevented association of CD4 with rafts, but did not suppress the HIV-1 receptor function of CD4. Collectively, these results strongly suggest that the presence of HIV-1 receptors in rafts is not required for viral infection. We show, however, that depleting plasma membrane cholesterol inhibits HIV-1 entry. We therefore propose that cholesterol modulates the HIV-1 entry process independently of its ability to promote raft formation.  相似文献   
995.
Mutations of the Smad4 gene, a member of a group of TGF-beta signal transduction components, occur in several types of cancer suggesting that its inactivation significantly affects TGF-beta responsiveness in these tumors. To further investigate the role of Smad4 with respect to TGF-beta signaling and carcinogenesis, we re-expressed the Smad4 gene in the Smad4-deficient cancer cell line FaDu by microcell-mediated chromosome transfer (MMCT) and retroviral infection to closely approximate physiological protein levels. The Smad4-expressing FaDu clones were then evaluated for TGF-beta responsiveness to assess the role of Smad4 in TGF-beta-induced growth inhibition and target gene regulation. We found that the re-expression of the Smad4 gene by either method partially restored TGF-beta responsiveness in FaDu cells with respect to both growth inhibition and expression of p21WAF1/CIP1 and p15INK4B. However, only the microcell hybrids showed growth retardation in organotypic raft culture and an enhanced ability to upregulate fibronectin. In contrast, the re-expression of Smad4 by either method failed to suppress tumorigenicity. These results suggest that in addition to a homozygous deletion of Smad4, FaDu cells contain additional defects within the TGF-beta signaling pathway, thereby limiting the extent of TGF-beta responsiveness upon Smad4 re-expression and perhaps accounting for the inability to induce p15INK4B to a high level. They also demonstrate the advantages of providing a physiological extracellular environment, when assessing TGFbeta responsiveness.  相似文献   
996.
We investigated in six men the impact of 17 days of head-down bed rest (HDBR) on the daily rhythms of the hormones involved in hydroelectrolytic regulation. This HDBR study was designed to mimic a real space flight. Urine samples were collected at each voiding before, during and after HDBR. Urinary excretion of Growth Hormone (GH), Cortisol, 6 Sulfatoxymelatonin, Normetadrenaline (NMN) and Metadrenaline (NM) was determined. A decrease in urinary cortisol excretion during the night of HDBR was noted. For GH, a rhythm was found before and during HDBR. The rhythm of melatonin, evaluated with the urine excretion of 6 Sulfatoxymelatonin (aMT6S), the main hepatic metabolite, persisted throughout the experiment without any modification to the level of phase. A decrease during the night was noted for normetadrenaline urinary derivates, but only during the HDBR.  相似文献   
997.
A simple and reliable method for the preparation of biological samples for the evaluation of biochemical parameters representative of the redox and energy states, such as glutathione (GSH), oxidized glutathione (GSSG), oxidized nicotinamide adenine dinucleotide (NAD+), reduced nicotinamide adenine dinucleotide (NADH), oxidized nicotinamide adenine dinucleotide phosphate (NADP+), reduced nicotinamide adenine dinucleotide phosphate (NADPH), coenzyme A (CoASH), oxidized CoASH, ascorbate, malondialdehyde, oxypurines, nucleosides, and energy metabolites, is presented. Fast deproteinization under nonoxidizing conditions is obtained by tissue homogenization in ice-cold, nitrogen-saturated CH3CN + 10 mM KH2PO4 (3:1; v:v), pH 7.40. After sample centrifugation to pellet precipitated proteins, organic solvent removal is performed on clear supernatants by three washings with large volumes of high-performance liquid chromatography (HPLC)-grade chloroform. The remaining aqueous phase, free of solvent and any lipid-soluble substances that may interfere with the further metabolite analysis, is used for the simultaneous ion-pairing HPLC determination of 39 compounds by means of a Kromasil C-18, 250 x 4.6-mm, 5-microm-particle-size column with tetrabutylammonium hydroxide as the pairing reagent. Results obtained by using the present method to prepare different rat tissue extracts demonstrate that it is possible to perform a single tissue preparation only for monitoring, in the same sample, compounds representative of the redox state (through the direct determination of GSH, GSSG, NAD+, NADH, NADP+, NADPH, CoASH, and oxidized CoASH) and of the cell energy state (by the analysis of oxypurines, nucleosides, and energy metabolites). Applicability of this sample processing procedure to quantify variations of the aforementioned compounds under pathological conditions was effected in rats subjected to moderate closed-head trauma.  相似文献   
998.
It is well known that nitric oxide (NO), the most important vasodilator agent, plays an important role in lowering vascular resistance in the human umbilical-placental circulation and that its deficiency is related to the pathogenesis of pre-eclamptic disorder. Besides it has recently been demonstrated that human hemoglobin (HbA) is able to transport nitric oxide, as S-nitrosohemoglobin (SNO-Hb), from the arterial to the venous blood. In the present study we examine the functional properties of the adult and fetal nitrosated hemoglobins to see if the double transport of oxygen and NO may influence the fetal oxygenation and the relation between maternal and fetal blood. Our results show that S-nitrosation significantly increases the oxygen affinity of the adult Hb (HbA) with respect to native protein (no-nitrosated) while the functional properties of HbF are less influenced. The oxygen affinity modification, found for SNO-HbA, was ascribed to the nitrosation of cysteine beta 93: really, the same residue is also present in the gamma chains of fetal hemoglobin, while the increase of affinity is less evidenced; hence, it is probable that the 39 aminoacidic substitutions between beta and gamma chains allay the effects of S-nitrosation. As regards the physiological modulators (protons, chloride ions, 2,3-diphosphoglyceric acid, and temperature), they influence the oxygen affinity of the two hemoglobins S-nitrosated, in equal mode with respect to the native forms determining the same variation on the oxygen affinity. Hence, our results evidence the fact that the NO release by SNO-HbA "in vivo" would be limited to regions of extremely low oxygen tension (such as hypoxic regions), while in fetus, SNO-HbF would unload nitric oxide and oxygen at pressure values close to normal.  相似文献   
999.
The synthesis of sufficient amounts of oligosaccharides is the bottleneck for the study of their biological function and their possible use as drug. As an alternative for chemical synthesis, we propose to use Escherichia coli as a "living factory." We have addressed the production of the Galp alpha(1-3)Galp beta(1-4)GlcNAc epitope, the major porcine antigen responsible for xenograft rejection. An E. coli strain was generated which simultaneously expresses NodC (to provide the chitin-pentaose acceptor), beta(1-4) galactosyltransferase LgtB, and bovine alpha(1-3) galactosyltransferase GstA. This strain produced 0.68 g/L of the heptasaccharide Galp alpha(1-3)Galp beta(1-4)(GlcNAc)(5), which harbours the xenoantigen at its non-reducing end, establishing the feasibility of this approach.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号