首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   15篇
  国内免费   1篇
  2021年   2篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   5篇
  2014年   2篇
  2013年   4篇
  2012年   5篇
  2011年   4篇
  2010年   5篇
  2009年   2篇
  2008年   7篇
  2007年   11篇
  2006年   5篇
  2005年   12篇
  2004年   6篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  2000年   9篇
  1999年   7篇
  1996年   1篇
  1994年   3篇
  1993年   2篇
  1987年   1篇
排序方式: 共有116条查询结果,搜索用时 46 毫秒
21.

Background

Many musculoskeltal injuries in the workplace have been attributed to the repetitive loading of muscle and soft tissues. It is not disputed that muscular fatigue is a risk factor for musculoskeltal injury, however the disparity between gender with respect to muscular fatigability and rate of recovery is not well understood. Current health and safety guidelines do not account for sex differences in fatiguability and may be predisposing one gender to greater risk. The purpose of this study was to quantify the sex differences in fatigue development and recovery rate of lower and upper body musculature after repeated bouts of sustained isometric contractions.

Methods

Twenty-seven healthy males (n = 12) and females (n = 15) underwent bilateral localized fatigue of either the knee extensors (male: n = 8; female: n = 8), elbow flexors (male: n = 8; female: n = 10), or both muscle groups. The fatigue protocol consisted of ten 30-second sub-maximal isometric contractions. The changes in maximum voluntary contraction (MVC), electrically evoked twitches, and motor unit activation (MUA) were assessed along with the ability to control the sustained contractions (SLP) during the fatigue protocol using a mixed four-factor repeated measures ANOVA (gender × side × muscle × time) design with significance set at p < 0.05.

Results

There was a significant loss of MVC, MUA, and evoked twitch amplitude from pre- to post-fatigue in both the arms and legs. Males had greater relative loss of isometric force, a higher rate of fatigue development, and were less capable of maintaining the fatiguing contractions in the legs when compared to the females.

Conclusion

The nature of the induced fatigue was a combination of central and peripheral fatigue that did not fully recover over a 45-minute period. The results appear to reflect sex differences that are peripheral, and partially support the muscle mass hypothesis for explaining differences in muscular fatigue.
  相似文献   
22.
Burguete AS  Fenn TD  Brunger AT  Pfeffer SR 《Cell》2008,132(2):286-298
GCC185 is a large coiled-coil protein at the trans Golgi network that is required for receipt of transport vesicles inbound from late endosomes and for anchoring noncentrosomal microtubules that emanate from the Golgi. Here, we demonstrate that recruitment of GCC185 to the Golgi is mediated by two Golgi-localized small GTPases of the Rab and Arl families. GCC185 binds Rab6, and mutation of residues needed for Rab binding abolishes Golgi localization. The crystal structure of Rab6 bound to the GCC185 Rab-binding domain reveals that Rab6 recognizes a two-fold symmetric surface on a coiled coil immediately adjacent to a C-terminal GRIP domain. Unexpectedly, Rab6 binding promotes association of Arl1 with the GRIP domain. We present a structure-derived model for dual GTPase membrane attachment that highlights the potential ability of Rab GTPases to reach binding partners at a significant distance from the membrane via their unstructured and membrane-anchored, hypervariable domains.  相似文献   
23.
PSD-95/SAP90 is a member of the MAGUK superfamily. In excitatory synapses, PSD-95 clusters receptors and ion channels at specific sites in the postsynaptic membrane and organizes downstream signaling and cytoskeletal molecules. We have determined the crystal structures of the apo and GMP-bound forms to 2.3 and 2.0 A resolutions, respectively, of a fragment containing the SH3, HOOK, and guanylate kinase (GK) domains of PSD-95. We observe an intramolecular interaction between the SH3 and GK domains involving the formation of a beta sheet including residues N- and C-terminal to the GK domain. Based on amino acid conservation and mutational data available in the literature, we propose that this intramolecular interaction is a common feature among MAGUK proteins.  相似文献   
24.
Lysosome–autophagosome fusion is critical to autophagosome maturation. Although several proteins that regulate this fusion process have been identified, the prefusion architecture and its regulation remain unclear. Herein, we show that upon stimulation, multiple lysosomes form clusters around individual autophagosomes, setting the stage for membrane fusion. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein on lysosomes—vesicle-associated membrane protein 8 (VAMP8)—plays an important role in forming this prefusion state of lysosomal clusters. To study the potential role of phosphorylation on spontaneous fusion, we investigated the effect of phosphorylation of C-terminal residues of VAMP8. Using a phosphorylation mimic, we observed a decrease of fusion in an ensemble lipid mixing assay and an increase of unfused lysosomes associated with autophagosomes. These results suggest that phosphorylation not only reduces spontaneous fusion for minimizing autophagic flux under normal conditions, but also preassembles multiple lysosomes to increase the fusion probability for resuming autophagy upon stimulation. VAMP8 phosphorylation may thus play an important role in chemotherapy drug resistance by influencing autophagosome maturation.Subject terms: Cancer therapeutic resistance, Membrane fusion  相似文献   
25.
Syntaxin/SNAP-25 interactions precede assembly of the ternary SNARE complex that is essential for neurotransmitter release. This binary complex has been difficult to characterize by bulk methods because of the prevalence of a 2:1 dead-end species. Here, using single-molecule fluorescence, we find the structure of the 1:1 syntaxin/SNAP-25 binary complex is variable, with states changing on the second timescale. One state corresponds to a parallel three-helix bundle, whereas other states show one of the SNAP-25 SNARE domains dissociated. Adding synaptobrevin suppresses the dissociated helix states. Remarkably, upon addition of complexin, Munc13, Munc18, or synaptotagmin, a similar effect is observed. Thus, the 1:1 binary complex is a dynamic acceptor for synaptobrevin binding, and accessory proteins stabilize this acceptor. In the cellular environment the binary complex is actively maintained in a configuration where it can rapidly interact with synaptobrevin, so formation is not likely a limiting step for neurotransmitter release.  相似文献   
26.
The assembly of multiprotein complexes at the membrane interface governs many signaling processes in cells. However, very few methods exist for obtaining biophysical information about protein complex formation at the membrane. We used single molecule fluorescence resonance energy transfer to study complexin and synaptotagmin interactions with the SNARE complex in deposited lipid bilayers. Using total internal reflectance microscopy, individual binding events at the membrane could be resolved despite an excess of unbound protein in solution. Fluorescence resonance energy transfer (FRET)-efficiency derived distances for the complexin-SNARE interaction were consistent with the crystal structure of the complexin-SNARE complex. The unstructured N-terminal region of complexin showed broad distributions of FRET efficiencies to the SNARE complex, suggesting that information on conformational variability can be obtained from FRET efficiency distributions. The low-affinity interaction of synaptotagmin with the SNARE complex changed dramatically upon addition of Ca2+ with high FRET efficiency interactions appearing between the C2B domain and linker domains of synaptotagmin and the membrane proximal portion of the SNARE complex. These results demonstrate that single molecule FRET can be used as a "spectroscopic ruler" to simultaneously gain structural and kinetic information about transient multiprotein complexes at the membrane interface.  相似文献   
27.
This paper presents a pedagogical framework for teaching cross-cultural clinical ethics. The approach, offered at the intersection of anthropology and bioethics, is innovative in that it takes on the “social sciences versus bioethics” debate that has been ongoing in North America for three decades. The argument is made that this debate is flawed on both sides and, moreover, that the application of cross-cultural thinking to clinical ethics requires using the tools of the social sciences (such as the critique of the universality of the Euro-American construct of “autonomy”) within (rather than in opposition to) a principles-based framework for clinical ethics. This paper introduces the curriculum and provides guidelines for how to teach cross-cultural clinical ethics. The learning points that are introduced emphasize culture in its relation to power and underscore the importance of viewing both biomedicine and bioethics as culturally constructed.  相似文献   
28.
Postsynaptic neuroligins are thought to perform essential functions in synapse validation and synaptic transmission by binding to, and dimerizing, presynaptic α‐ and β‐neurexins. To test this hypothesis, we examined the functional effects of neuroligin‐1 mutations that impair only α‐neurexin binding, block both α‐ and β‐neurexin binding, or abolish neuroligin‐1 dimerization. Abolishing α‐neurexin binding abrogated neuroligin‐induced generation of neuronal synapses onto transfected non‐neuronal cells in the so‐called artificial synapse‐formation assay, even though β‐neurexin binding was retained. Thus, in this assay, neuroligin‐1 induces apparent synapse formation by binding to presynaptic α‐neurexins. In transfected neurons, however, neither α‐ nor β‐neurexin binding was essential for the ability of postsynaptic neuroligin‐1 to dramatically increase synapse density, suggesting a neurexin‐independent mechanism of synapse formation. Moreover, neuroligin‐1 dimerization was not required for either the non‐neuronal or the neuronal synapse‐formation assay. Nevertheless, both α‐neurexin binding and neuroligin‐1 dimerization were essential for the increase in apparent synapse size that is induced by neuroligin‐1 in transfected neurons. Thus, neuroligin‐1 performs diverse synaptic functions by mechanisms that include as essential components of α‐neurexin binding and neuroligin dimerization, but extend beyond these activities.  相似文献   
29.
The botulinum neurotoxin serotype A light chain (BoNT/A LC) protease is the catalytic component responsible for the neuroparalysis that is characteristic of the disease state botulism. Three related peptide-like molecules (PLMs) were designed using previous information from co-crystal structures, synthesized, and assayed for in vitro inhibition against BoNT/A LC. Our results indicate these PLMS are competitive inhibitors of the BoNT/A LC protease and their Ki values are in the nM-range. A co-crystal structure for one of these inhibitors was determined and reveals that the PLM, in accord with the goals of our design strategy, simultaneously involves both ionic interactions via its P1 residue and hydrophobic contacts by means of an aromatic group in the P2′ position. The PLM adopts a helical conformation similar to previously determined co-crystal structures of PLMs, although there are also major differences to these other structures such as contacts with specific BoNT/A LC residues. Our structure further demonstrates the remarkable plasticity of the substrate binding cleft of the BoNT/A LC protease and provides a paradigm for iterative structure-based design and development of BoNT/A LC inhibitors.  相似文献   
30.
A single molecule fluorescence assay is presented for studying the mechanism of soluble N-ethyl maleimide sensitive-factor attachment protein receptors (SNAREs)-mediated liposome fusion to supported lipid bilayers. The three neuronal SNAREs syntaxin-1A, synaptobrevin-II (VAMP), and SNAP-25A were expressed separately, and various dye-labeled combinations of the SNAREs were tested for their ability to dock liposomes and induce fusion. Syntaxin and synaptobrevin in opposing membranes were both necessary and sufficient to dock liposomes to supported bilayers and to induce thermally activated fusion. As little as one SNARE interaction was sufficient for liposome docking. Fusion of docked liposomes with the supported bilayer was monitored by the dequenching of soluble fluorophores entrapped within the liposomes. Fusion was stimulated by illumination with laser light, and the fusion probability was enhanced by raising the ambient temperature from 22 to 37 degrees C, suggesting a thermally activated process. Surprisingly, SNAP-25 had little effect on docking efficiency or the probability of thermally induced fusion. Interprotein fluorescence resonance energy transfer experiments suggest the presence of other conformational states of the syntaxin*synaptobrevin interaction in addition to those observed in the crystal structure of the SNARE complex. Furthermore, although SNARE complexes involved in liposome docking preferentially assemble into a parallel configuration, both parallel and antiparallel configurations were observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号