首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   14篇
  2023年   1篇
  2022年   5篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2016年   9篇
  2015年   13篇
  2014年   11篇
  2013年   13篇
  2012年   21篇
  2011年   20篇
  2010年   9篇
  2009年   6篇
  2008年   10篇
  2007年   4篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   10篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1981年   2篇
  1977年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有196条查询结果,搜索用时 15 毫秒
91.
In this study, the mechanism of action of the pro-apoptotic alkaloid lycorine on an amitochondriate cell, the parasite Trichomonas vaginalis, was investigated. The cytotoxicity of lycorine against T. vaginalis was studied from 2.5 to 1000 μM and several important ultrastructural alterations were observed by electron microscopy. Lycorine arrested the T. vaginalis cell cycle, although no hallmarks of apoptosis, such as apoptotic bodies, were observed. Consequently, the underlying mechanism of action fails to completely fulfill the criteria for apoptosis. However, some similarities to paraptotic cell death were observed.  相似文献   
92.
93.

Background

Canine rabies is one of the most important and feared zoonotic diseases in the world. In some regions rabies elimination is being successfully coordinated, whereas in others rabies is endemic and continues to spread to uninfected areas. As epidemics emerge, both accepted and contentious control methods are used, as questions remain over the most effective strategy to eliminate rabies. The Indonesian island of Bali was rabies-free until 2008 when an epidemic in domestic dogs began, resulting in the deaths of over 100 people. Here we analyze data from the epidemic and compare the effectiveness of control methods at eliminating rabies.

Methodology/Principal Findings

Using data from Bali, we estimated the basic reproductive number, R 0, of rabies in dogs, to be ∼1·2, almost identical to that obtained in ten–fold less dense dog populations and suggesting rabies will not be effectively controlled by reducing dog density. We then developed a model to compare options for mass dog vaccination. Comprehensive high coverage was the single most important factor for achieving elimination, with omission of even small areas (<0.5% of the dog population) jeopardizing success. Parameterizing the model with data from the 2010 and 2011 vaccination campaigns, we show that a comprehensive high coverage campaign in 2012 would likely result in elimination, saving ∼550 human lives and ∼$15 million in prophylaxis costs over the next ten years.

Conclusions/Significance

The elimination of rabies from Bali will not be achieved through achievable reductions in dog density. To ensure elimination, concerted high coverage, repeated, mass dog vaccination campaigns are necessary and the cooperation of all regions of the island is critical. Momentum is building towards development of a strategy for the global elimination of canine rabies, and this study offers valuable new insights about the dynamics and control of this disease, with immediate practical relevance.  相似文献   
94.
Protein kinase C βII (PKCβII) levels increase in the myocardium of patients with end‐stage heart failure (HF). Also targeted overexpression of PKCβII in the myocardium of mice leads to dilated cardiomyopathy associated with inflammation, fibrosis and myocardial dysfunction. These reports suggest a deleterious role of PKCβII in HF development. Using a post‐myocardial infarction (MI) model of HF in rats, we determined the benefit of chronic inhibition of PKCβII on the progression of HF over a period of 6 weeks after the onset of symptoms and the cellular basis for these effects. Four weeks after MI, rats with HF signs that were treated for 6 weeks with the PKCβII selective inhibitor (βIIV5‐3 conjugated to TAT47–57 carrier peptide) (3 mg/kg/day) showed improved fractional shortening (from 21% to 35%) compared to control (TAT47–57 carrier peptide alone). Formalin‐fixed mid‐ventricle tissue sections stained with picrosirius red, haematoxylin and eosin and toluidine blue dyes exhibited a 150% decrease in collagen deposition, a two‐fold decrease in inflammation and a 30% reduction in mast cell degranulation, respectively, in rat hearts treated with the selective PKCβII inhibitor. Further, a 90% decrease in active TGFβ1 and a significant reduction in SMAD2/3 phosphorylation indicated that the selective inhibition of PKCβII attenuates cardiac remodelling mediated by the TGF‐SMAD signalling pathway. Therefore, sustained selective inhibition of PKCβII in a post‐MI HF rat model improves cardiac function and is associated with inhibition of pathological myocardial remodelling.  相似文献   
95.
Tubule-interstitial nephritis (TIN) results in decreased renal function and interstitial inflammation, which ultimately leads to fibrosis. Excessive adenine intake can cause TIN because xanthine dehydrogenase (XDH) can convert this purine into an insoluble compound, which precipitates in the tubuli. Innate immune sensors, such as Toll-like receptors (TLR) and inflammasome complex, play a crucial role in the initiation of inflammation. The aim of this study was to evaluate the roles of TLR-2 and -4, Myd88 and inflammasome complex in an experimental model of TIN. Here, we show that wild-type (WT) mice fed adenine-enriched food exhibited significant renal dysfunction and enhanced cellular infiltration accompanied by collagen deposition. They also presented higher gene and protein expression of pro-inflammatory cytokines. In contrast, TLR-2, -4, MyD88, ASC and Caspase-1 KO mice showed renoprotection associated with expression of inflammatory molecules at levels comparable to controls. Furthermore, treatment of WT animals with allopurinol, an XDH inhibitor, led to reduced levels of uric acid, oxidative stress, collagen deposition and a downregulation of the NF-kB signaling pathway. We concluded that MyD88 signaling and inflammasome participate in the development of TIN. Furthermore, inhibition of XDH seems to be a promising way to therapeutically target the developing inflammatory process.  相似文献   
96.
Myocardial remodeling and heart failure (HF) are common sequelae of many forms of cardiovascular disease and a leading cause of mortality worldwide. Accumulation of damaged cardiac proteins in heart failure has been described. However, how protein quality control (PQC) is regulated and its contribution to HF development are not known. Here, we describe a novel role for activated protein kinase C isoform βII (PKCβII) in disrupting PQC. We show that active PKCβII directly phosphorylated the proteasome and inhibited proteasomal activity in vitro and in cultured neonatal cardiomyocytes. Importantly, inhibition of PKCβII, using a selective PKCβII peptide inhibitor (βIIV5-3), improved proteasomal activity and conferred protection in cultured neonatal cardiomyocytes. We also show that sustained inhibition of PKCβII increased proteasomal activity, decreased accumulation of damaged and misfolded proteins and increased animal survival in two rat models of HF. Interestingly, βIIV5-3-mediated protection was blunted by sustained proteasomal inhibition in HF. Finally, increased cardiac PKCβII activity and accumulation of misfolded proteins associated with decreased proteasomal function were found also in remodeled and failing human hearts, indicating a potential clinical relevance of our findings. Together, our data highlights PKCβII as a novel inhibitor of proteasomal function. PQC disruption by increased PKCβII activity in vivo appears to contribute to the pathophysiology of heart failure, suggesting that PKCβII inhibition may benefit patients with heart failure. (218 words).  相似文献   
97.
We aimed to investigate the possible role of creatine (CR) supplementation in counteracting dexamethasone-induced muscle wasting and insulin resistance in rats. Also, we examined whether CR intake would modulate molecular pathways involved in muscle remodeling and insulin signaling. Animals were randomly divided into four groups: (1) dexamethasone (DEX); (2) control pair-fed (CON-PF); (3) dexamethasone plus CR (DEX-CR); and (4) CR pair-fed (CR-PF). Dexamethasone (5 mg/kg/day) and CR (5 g/kg/day) were given via drinking water for 7 days. Plantaris and extensor digitorum longus (EDL) muscles were removed for analysis. Plantaris and EDL muscle mass were significantly reduced in the DEX-CR and DEX groups when compared with the CON-PF and CR-PF groups (P < 0.05). Dexamethasone significantly decreased phospho-Ser473-Akt protein levels compared to the CON-PF group (P < 0.05) and CR supplementation aggravated this response (P < 0.001). Serum glucose was significantly increased in the DEX group when compared with the CON-PF group (DEX 7.8 ± 0.6 vs. CON-PF 5.2 ± 0.5 mmol/l; P < 0.05). CR supplementation significantly exacerbated hyperglycemia in the dexamethasone-treated animals (DEX-CR 15.1 ± 2.4 mmol/l; P < 0.05 vs. others). Dexamethasone reduced GLUT-4 translocation when compared with the CON-PF and CR-PF (P < 0.05) groups and this response was aggravated by CR supplementation (P < 0.05 vs. others). In conclusion, supplementation with CR resulted in increased insulin resistance and did not attenuate muscle wasting in rats treated with dexamethasone. Given the contrast with the results of human studies that have shown benefits of CR supplementation on muscle atrophy and insulin sensitivity, we suggest caution when extrapolating this animal data to human subjects.  相似文献   
98.
Highlights? Top-down and bottom-up approaches to genome streamlining. ? Computational support for constructing and refactoring streamlined genomes. ? From genome engineering to metabolic reprogramming. ? Perspectives in applied genome engineering.  相似文献   
99.
ABSTRACT: BACKGROUND: Lycopene, a major carotenoid component of tomato, has a potential anticancer activity in many types of cancer. Epidemiological and clinical trials rarely provide evidence for mechanisms of the compound's action, and studies on its effect on cancer of different cell origins are now being done. The aim of the present study was to determine the effect of lycopene on cell cycle and cell viability in eight human cancer cell lines. METHODS: Human cell lines were treated with lycopene (1-5 uM) for 48 and 96 h. Cell viability was monitored using the method of MTT. The cell cycle was analyzed by flow cytometry, and apoptotic cells were identified by terminal deoxynucleotidyl transferase-mediated dUTP nick labeling (TUNEL) and by DAPI. RESULTS: Our data showed a significant decrease in the number of viable cells in three cancer cells lines (HT-29, T84 and MCF-7) after 48 h treatment with lycopene, and changes in the fraction of cells retained in different cell cycle phases. Lycopene promoted also cell cycle arrest followed by decreased cell viability in majority of cell lines after 96 h, as compared to controls. Furthermore, an increase in apoptosis was observed in four cell lines (T-84, HT-29, MCF-7 and DU145) when cells were treated with lycopene. CONCLUSIONS: Our findings show the capacity of lycopene to inhibit cell proliferation, arrest cell cycle in different phases and increase apoptosis, mainly in breast, colon and prostate lines after 96 h. These observations suggest that lycopene may alter cell cycle regulatory proteins depending on the type of cancer and the dose of lycopene administration. Taken together, these data indicated that the antiproliferative effect of lycopene was cellular type, time and dose-dependent. KEY WORDS: lycopene, cancer, bioactive compounds, cell cycle.  相似文献   
100.
Cryopreservation of mesenchymal stem cells from amniotic fluid is of clinical importance, as these cells can be harvested during the prenatal period and stored for use in treatments. We examined the behavior of mesenchymal stem cells from human amniotic fluid in culture that had been subjected to cryopreservation. We assessed chromosomal stability through karyotype analysis, determined whether multipotent capacity (differentiation into adipogenic, chondrogenic, and osteogenic cells) is maintained, and analyzed SOX2 and NANOG expression after thawing. Five amniotic fluid samples were cryopreserved for 150 days. No chromosomal aberrations were observed. The expression levels of NANOG and SOX2 also were quite similar before and after cryopreservation. Capacity for differentiation into adipogenic, chondrogenic, and osteogenic tissues also remained the same. We conclude that cryopreservation of amniotic fluid does not alter karyotype, NANOG/SOX2 gene expression, or multipotent capacity of stem cells that have been collected from amniotic fluid during pregnancy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号