首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   21篇
  278篇
  2024年   1篇
  2023年   4篇
  2022年   8篇
  2021年   12篇
  2020年   5篇
  2019年   7篇
  2018年   6篇
  2017年   8篇
  2016年   10篇
  2015年   12篇
  2014年   14篇
  2013年   21篇
  2012年   31篇
  2011年   26篇
  2010年   18篇
  2009年   16篇
  2008年   19篇
  2007年   19篇
  2006年   11篇
  2005年   9篇
  2004年   5篇
  2003年   8篇
  2002年   2篇
  2001年   2篇
  1999年   2篇
  1996年   1篇
  1976年   1篇
排序方式: 共有278条查询结果,搜索用时 15 毫秒
51.
52.
Embryonic stem (ES) cells can be induced to differentiate into embryoid bodies (EBs) in a synchronised manner when plated at a fixed density in hanging drops. This differentiation procedure mimics post-implantation development in mouse embryos and also serves as the starting point of protocols used in differentiation of stem cells into various lineages. Currently, little is known about the potential influence of microRNAs (miRNAs) on mRNA expression patterns during EB formation. We have measured mRNA and miRNA expression in developing EBs plated in hanging drops until day 3, when discrete structural changes occur involving their differentiation into three germ layers. We observe significant alterations in mRNA and miRNA expression profiles during this early developmental time frame, in particular of genes involved in germ layer formation, stem cell pluripotency and nervous system development. Computational target prediction using Pictar, TargetScan and miRBase Targets reveals an enrichment of binding sites corresponding to differentially and highly expressed miRNAs in stem cell pluripotency genes and a neuroectodermal marker, Nes. We also find that members of let-7 family are significantly down-regulated at day 3 and the corresponding up-regulated genes are enriched in let-7 seed sequences. These results depict how miRNA expression changes may affect the expression of mRNAs involved in EB formation on a genome-wide scale. Understanding the regulatory effects of miRNAs during EB formation may enable more efficient derivation of different cell types in culture.  相似文献   
53.
van der Veen S  Abee T 《PloS one》2011,6(12):e28590
The food-borne pathogen Listeria monocytogenes is a gram-positive microaerophilic facultative anaerobic rod and the causative agent of the devastating disease listeriosis. L. monocytogenes is able to form biofilms in the food processing environment. Since biofilms are generally hard to eradicate, they can function as a source for food contamination. In several occasions biofilms have been identified as a source for genetic variability, which potentially can result in adaptation of strains to food processing or clinical conditions. However, nothing is known about mutagenesis in L. monocytogenes biofilms and the possible mechanisms involved. In this study, we showed that the generation of genetic variants was specifically induced in continuous-flow biofilms of L. monocytogenes, but not in static biofilms. Using specific dyes and radical inhibitors, we showed that the formation of superoxide and hydroxyl radicals was induced in continuous-flow biofilms, which was accompanied with in an increase in DNA damage. Promoter reporter studies showed that recA, which is an important component in DNA repair and the activator of the SOS response, is activated in continuous-flow biofilms and that activation was dependent on radical-induced DNA damage. Furthermore, continuous-flow biofilm experiments using an in-frame recA deletion mutant verified that RecA is required for induced generation of genetic variants. Therefore, we can conclude that generation of genetic variants in L. monocytogenes continuous-flow biofilms results from radical-induced DNA damage and RecA-mediated mutagenic repair of the damaged DNA.  相似文献   
54.
Volatile aroma-active esters are responsible for the fruity character of fermented alcoholic beverages such as beer and wine. Esters are produced by fermenting yeast cells in an enzyme-catalyzed intracellular reaction. In order to investigate and compare the roles of the known Saccharomyces cerevisiae alcohol acetyltransferases, Atf1p, Atf2p and Lg-Atf1p, in volatile ester production, the respective genes were either deleted or overexpressed in a laboratory strain and a commercial brewing strain. Subsequently, the ester formation of the transformants was monitored by headspace gas chromatography and gas chromatography combined with mass spectroscopy (GC-MS). Analysis of the fermentation products confirmed that the expression levels of ATF1 and ATF2 greatly affect the production of ethyl acetate and isoamyl acetate. GC-MS analysis revealed that Atf1p and Atf2p are also responsible for the formation of a broad range of less volatile esters, such as propyl acetate, isobutyl acetate, pentyl acetate, hexyl acetate, heptyl acetate, octyl acetate, and phenyl ethyl acetate. With respect to the esters analyzed in this study, Atf2p seemed to play only a minor role compared to Atf1p. The atf1Δ atf2Δ double deletion strain did not form any isoamyl acetate, showing that together, Atf1p and Atf2p are responsible for the total cellular isoamyl alcohol acetyltransferase activity. However, the double deletion strain still produced considerable amounts of certain other esters, such as ethyl acetate (50% of the wild-type strain), propyl acetate (50%), and isobutyl acetate (40%), which provides evidence for the existence of additional, as-yet-unknown ester synthases in the yeast proteome. Interestingly, overexpression of different alleles of ATF1 and ATF2 led to different ester production rates, indicating that differences in the aroma profiles of yeast strains may be partially due to mutations in their ATF genes.  相似文献   
55.
56.
57.
Weather surveillance radars are increasingly used for monitoring the movements and abundances of animals in the airspace. However, analysis of weather radar data remains a specialised task that can be technically challenging. Major hurdles are the difficulty of accessing and visualising radar data on a software platform familiar to ecologists and biologists, processing the low‐level data into products that are biologically meaningful, and summarizing these results in standardized measures. To overcome these hurdles, we developed the open source R package bioRad, which provides a toolbox for accessing, visualizing and analyzing weather radar data for biological studies. It provides functionality to access low‐level radar data, process these data into meaningful biological information on animal speeds and directions at different altitudes in the atmosphere, visualize these biological extractions, and calculate further summary statistics. The package aims to standardize methods for extracting and reporting biological signals from weather radars. Here we describe a roadmap for analyzing weather radar data using bioRad. We also define weather radar equivalents for familiar measures used in the field of migration ecology, such as migration traffic rates, and recommend several good practices for reporting these measures. The bioRad package integrates with low‐level data from both the European radar network (OPERA) and the radar network of the United States (NEXRAD). bioRad aims to make weather radar studies in ecology easier and more reproducible, allowing for better inter‐comparability of studies.  相似文献   
58.
Phenylpyruvate decarboxylase (PPDC) of Azospirillum brasilense, involved in the biosynthesis of the plant hormone indole-3-acetic acid and the antimicrobial compound phenylacetic acid, is a thiamine diphosphate-dependent enzyme that catalyses the nonoxidative decarboxylation of indole- and phenylpyruvate. Analogous to yeast pyruvate decarboxylases, PPDC is subject to allosteric substrate activation, showing sigmoidal v versus [S] plots. The present paper reports the crystal structure of this enzyme determined at 1.5 A resolution. The subunit architecture of PPDC is characteristic for other members of the pyruvate oxidase family, with each subunit consisting of three domains with an open alpha/beta topology. An active site loop, bearing the catalytic residues His112 and His113, could not be modelled due to flexibility. The biological tetramer is best described as an asymmetric dimer of dimers. A cysteine residue that has been suggested as the site for regulatory substrate binding in yeast pyruvate decarboxylase is not conserved, requiring a different mechanism for allosteric substrate activation in PPDC. Only minor changes occur in the interactions with the cofactors, thiamine diphosphate and Mg2+, compared to pyruvate decarboxylase. A greater diversity is observed in the substrate binding pocket accounting for the difference in substrate specificity. Moreover, a catalytically important glutamate residue conserved in nearly all decarboxylases is replaced by a leucine in PPDC. The consequences of these differences in terms of the catalytic and regulatory mechanism of PPDC are discussed.  相似文献   
59.
60.
This study shows that growth under respiration conditions has a negative impact on the survival of stationary-phase cultures of Lactobacillus plantarum WCFS1 at low pHs and that viability loss at critical values is associated with the formation of radicals and loss of membrane integrity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号