首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   793篇
  免费   98篇
  2023年   3篇
  2022年   6篇
  2021年   24篇
  2020年   13篇
  2019年   9篇
  2018年   14篇
  2017年   10篇
  2016年   33篇
  2015年   28篇
  2014年   34篇
  2013年   46篇
  2012年   69篇
  2011年   65篇
  2010年   28篇
  2009年   44篇
  2008年   52篇
  2007年   47篇
  2006年   41篇
  2005年   42篇
  2004年   31篇
  2003年   30篇
  2002年   37篇
  2001年   9篇
  2000年   6篇
  1999年   8篇
  1998年   8篇
  1997年   4篇
  1996年   7篇
  1995年   8篇
  1994年   3篇
  1993年   3篇
  1992年   9篇
  1991年   6篇
  1990年   11篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1986年   8篇
  1985年   10篇
  1984年   9篇
  1983年   6篇
  1979年   5篇
  1978年   4篇
  1977年   4篇
  1975年   5篇
  1974年   3篇
  1973年   6篇
  1972年   4篇
  1971年   4篇
  1970年   7篇
排序方式: 共有891条查询结果,搜索用时 890 毫秒
791.
Cyclic nucleotide-gated (CNG) channels are composed of the tetramer of alpha-subunit alone or alpha- and beta-subunits. The alpha-subunits of these channels have a conserved glutamate (Glu) residue within the pore-forming region and the residue determines the selectivity as well as the affinity for the extracellular divalent cations. Using the high-affinity mutant (E363D) of bovine retinal CNG channel in which the Glu at position 363 was replaced to Asp, we constructed tandem dimers and investigated the binding characteristics of divalent cations to the site. The gating and permeation characteristics of individual homomeric tandem dimers are indistinguishable to those of homo-tetramers formed by parental monomers. The heteromeric tandem dimers showed the binding affinity for Sr(2+) identical to the geometric mean of the affinities for two parent channels, indicating the energy additive and thus the simultaneous interaction. On the other hand, the binding affinity for Mg(2+) followed the harmonic mean of those parent channels indicating that Mg(2+) interacts more strongly with the subunit bearing Asp residue at the position. Thus the results strongly suggest that the Glu363 residues in the CNG channel pore be flexible enough to adapt different binding symmetries for different divalent cations. Moreover, the simultaneous interaction between the four Glu residues and Sr(2+) provides an important structural constraint to the CNG channel outer vestibule of unknown structure.  相似文献   
792.
Carotenoid biosynthesis in plants has been described at the molecular level for most of the biochemical steps in the pathway. However, the cis-trans isomerization of carotenoids, which is known to occur in vivo, has remained a mystery since its discovery five decades ago. To elucidate the molecular mechanism of carotenoid isomerization, we have taken a genetic map-based approach to clone the tangerine locus from tomato. Fruit of tangerine are orange and accumulate prolycopene (7Z,9Z,7'Z,9'Z-tetra-cis-lycopene) instead of the all-trans-lycopene, which normally is synthesized in the wild type. Our data indicate that the tangerine gene, designated CRTISO, encodes an authentic carotenoid isomerase that is required during carotenoid desaturation. CRTISO is a redox-type enzyme structurally related to the bacterial-type phytoene desaturase CRTI. Two alleles of tangerine have been investigated. In tangerine(mic), loss of function is attributable to a deletion mutation in CRTISO, and in tangerine(3183), expression of this gene is impaired. CRTISO from tomato is expressed in all green tissues but is upregulated during fruit ripening and in flowers. The function of carotene isomerase in plants presumably is to enable carotenoid biosynthesis to occur in the dark and in nonphotosynthetic tissues.  相似文献   
793.
Weisman R  Roitburg I  Nahari T  Kupiec M 《Genetics》2005,169(2):539-550
TOR protein kinases are key regulators of cell growth in eukaryotes. TOR is also known as the target protein for the immunosuppressive and potentially anticancer drug rapamycin. The fission yeast Schizosaccharomyces pombe has two TOR homologs. tor1+ is required under starvation and a variety of stresses, while tor2+ is an essential gene. Surprisingly, to date no rapamycin-sensitive TOR-dependent function has been identified in S. pombe. Herein, we show that S. pombe auxotrophs, in particular leucine auxotrophs, are sensitive to rapamycin. This sensitivity is suppressed by deletion of the S. pombe FKBP12 or by introducing a rapamycin-binding defective tor1 allele, suggesting that rapamycin inhibits a tor1p-dependent function. Sensitivity of leucine auxotrophs to rapamycin is observed when ammonia is used as the nitrogen source and can be suppressed by its replacement with proline. Consistently, using radioactive labeled leucine, we show that cells treated with rapamycin or disrupted for tor1+ are defective in leucine uptake when the nitrogen source is ammonia but not proline. Recently, it has been reported that tsc1+ and tsc2+, the S. pombe homologs for the mammalian TSC1 and TSC2, are also defective in leucine uptake. TSC1 and TSC2 may antagonize TOR signaling in mammalian cells and Drosophila. We show that reduction of leucine uptake in tor1 mutants is correlated with decreased expression of three putative amino acid permeases that are also downregulated in tsc1 or tsc2. These findings suggest a possible mechanism for regulation of leucine uptake by tor1p and indicate that tor1p, as well as tsc1p and tsc2p, positively regulates leucine uptake in S. pombe.  相似文献   
794.
Ha TS  Heo MS  Park CS 《Biophysical journal》2004,86(5):2871-2882
Large-conductance calcium-activated potassium (BK(Ca)) channels are composed of the pore-forming alpha-subunit and the auxiliary beta-subunits. The beta4-subunit is dominantly expressed in the mammalian central nervous system. To understand the physiological roles of the beta4-subunit on the BK(Ca) channel alpha-subunit (Slo), we isolated a full-length complementary DNA of rat beta4-subunit (rbeta4), expressed heterolgously in Xenopus oocytes, and investigated the detailed functional effects using electrophysiological means. When expressed together with rat Slo (rSlo), rbeta4 profoundly altered the gating characteristics of the Slo channel. At a given concentration of intracellular Ca(2+), rSlo/rbeta4 channels were more sensitive to transmembrane voltage changes. The activation and deactivation rates of macroscopic currents were decreased in a Ca(2+)-dependent manner. The channel activation by Ca(2+) became more cooperative by the coexpression of rbeta4. Single-channel recordings showed that the increased Hill coefficient for Ca(2+) was due to the changes in the open probability of the rSlo/rbeta4 channel. Single BK(Ca) channels composed of rSlo and rbeta4 also exhibited slower kinetics for steady-state gating compared with rSlo channels. Dwell times of both open and closed events were significantly increased. Because BK(Ca) channels are known to modulate neuroexcitability and the expression of the beta4-subunit is highly concentrated in certain subregions of brain, the electrophysiological properties of individual neurons should be affected profoundly by the expression of this second subunit.  相似文献   
795.
Long chain fatty acids are converted to acyl-CoAs by acyl-CoA synthetase (fatty acid CoA ligase: AMP forming, E.C. 6.2.1.3; ACS). Escherichia coli has a single ACS, FadD, that is essential for growth when fatty acids are the sole carbon and energy source. Rodents have five ACS isoforms that differ in substrate specificity, tissue expression, and subcellular localization and are believed to channel fatty acids toward distinct metabolic pathways. We expressed rat ACS isoforms 1-5 in an E. coli strain that lacked FadD. All rat ACS isoforms were expressed in E. coli fadD or fadDfadR and had ACS specific activities that were 1.6-20-fold higher than the wild type control strain expressing FadD. In the fadD background, the rat ACS isoforms 1, 2, 3, 4 and 5 oxidized [(14)C]oleate at 5 to 25% of the wild type levels, but only ACS5 restored growth on oleate as the sole carbon source. To ensure that enzymes of beta-oxidation were not limiting, assays of ACS activity, beta-oxidation, fatty acid transport, and phospholipid synthesis were also examined in a fadD fadR strain, thereby eliminating FadR repression of the transporter FadL and the enzymes of beta-oxidation. In this strain, fatty acid transport levels were low but detectable for ACS1, 2, 3, and 4 and were nearly 50% of wild type levels for ACS5. Despite increases in beta-oxidation, only ACS5 transformants were able to grow on oleate. These studies show that although ACS isoforms 1-4 variably supported moderate transport activity, beta-oxidation, and phospholipid synthesis and although their in vitro specific activities were greater than that of chromosomally encoded FadD, they were unable to substitute functionally for FadD regarding growth. Thus, membrane composition and protein-protein interactions may be critical in reconstituting bacterial ACS function.  相似文献   
796.
797.
798.
Itah R  Tal J  Davis C 《Journal of virology》2004,78(17):9474-9486
Productive infection by the murine autonomous parvovirus minute virus of mice (MVM) depends on a dividing cell population and its differentiation state. We have extended the in vivo analysis of the MVM host cell type range into the developing embryo by in utero inoculation followed by further gestation. The fibrotropic p strain (MVMp) and the lymphotropic i strain (MVMi) did not productively infect the early mouse embryo but were able to infect overlapping sets of cell types in the mid- or late-gestation embryo. Both MVMp and MVMi infected developing bone primordia, notochord, central nervous system, and dorsal root ganglia. MVMp exhibited extensive infection in fibroblasts, in the epithelia of lung and developing nose, and, to a lesser extent, in the gut. MVMi also infected endothelium. The data indicated that the host ranges of the two MVM strains consist of overlapping sets of cell types that are broader than previously known from neonate and in vitro infection experiments. The correlation between MVM host cell types and the cell types that activate the transgenic P4 promoter is consistent with the hypothesis that activation of the incoming viral P4 promoter by the host cell is one of the host range determinants of MVM.  相似文献   
799.
The object of this study was to examine the effect of high intensity, short duration pulsed electromagnetic fields (PEMF) on the healing of full thickness skin wounds in rats. Full thickness skin wounds were surgically created in two groups of Sprague-Dawley male rats. The rats were randomly divided into two groups, each containing 20 rats. Animals in the treatment group received treatments with the PEMF device on day 0, 3, 7, 9, 12, 14, 17, and 22, while the rats in the control group were subjected to the same procedure, but with the PEMF device not activated. Photographs of the surgically created wounds were obtained on day 0, 3, 7, 9, 12, 14, 17, and 22. Wound contraction (WC), wound epithelialization (WE), non-healed wound, and contraction-epithelialization (CE) ratio were calculated for each wound. No significant difference was found between the two groups for the parameters of WC, WE, non-healed wound, and CE ratio. A significant group x time interaction was found for WE and CE ratio. This type of PEMF did not have a significantly beneficial effect on wound healing. Wounds in the PEMF treated group were relatively less contracted and showed a compensatory increase in epithelialization in the early stages of wound repair.  相似文献   
800.
Genetic relationships among 50 fruiting-mei (Prunus mume Sieb. et Zucc.) cultivars from China and Japan were investigated, using 767 amplified fragment length polymorphism (AFLP) and 103 single nucleotide polymorphism (SNP) markers. The polymorphism among the cultivars was found to be 69.77%, based on EcoR I + Mse I AFLP primer pairs. The sequence alignment of 11 group sequences, derived from 50 samples, yielded 103 SNPs; the total length of genomic sequences was 3683 bp. Among these SNPs, 73 were heterozygous in the loci of different cultivars. The SNP distribution was 58% transition, 40% transversion, and 2% InDels. There was also 1 trinucleotide deletion. AFLP and SNP markers allowed us to evaluate the genetic diversity of these 50 fruiting-mei cultivars. The 2 derived cladograms did display some differences: all cultivars formed 2 subclusters (1A and 1B) in the cladogram based on AFLP polymorphisms, and formed 3 subclusters (2A, 2B, and 2C) in the cladogram based on SNP polymorphisms; and, in the cladogram based on AFLP polymorphisms, most cultivars from the Guangdong to Fujian provinces (G-F) in China, from the Yunnan, Hunan, and Sichuan provinces (Y-S-H) in China, and from Japan grouped in cluster 1A, and 18 (78.26%) of 23 cultivars from Jiangsu to Zhejiang provinces in China (J-Z) grouped in cluster 1B. The results demonstrate that mei cultivars from Japan are clustered with cultivars from China, and support the hypothesis that mei in Japan were introduced from China. Cultivars from the J-Z region of China have more genetic similarities. Cultivars from the G-F and Y-S-H regions have fewer genetic similarities and suggest more germplasm exchanges in the past.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号