首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   6篇
  175篇
  2023年   1篇
  2021年   7篇
  2020年   4篇
  2019年   2篇
  2018年   5篇
  2017年   2篇
  2016年   5篇
  2015年   9篇
  2014年   8篇
  2013年   9篇
  2012年   12篇
  2011年   11篇
  2010年   15篇
  2009年   9篇
  2008年   6篇
  2007年   4篇
  2006年   10篇
  2005年   10篇
  2004年   7篇
  2003年   6篇
  2002年   3篇
  2001年   7篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   2篇
  1987年   1篇
  1985年   1篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1970年   1篇
排序方式: 共有175条查询结果,搜索用时 0 毫秒
101.
102.
103.
The present study examined the physiological impact of a school based sprint interval training (SIT) intervention in replacement of standard physical education (SPE) class on cardio-respiratory fitness (CRF) and glucose homeostasis during the semester following summer vacation. Participants (n=49) were randomly allocated to either intervention (SIT; n=26, aged 16.9 ± 0.3 yrs) or control group who underwent standard physical education (SPE; n=23, aged 16.8 ± 0.6 yrs). CRF (VO2max) and glucose homeostasis were obtained prior-to and following 7 weeks of SIT exercise. Significant group x time interaction was observed for CRF (P < 0.01) with non-significant trends for fasting insulin (P= 0.08), and HOMA-IR (P=0.06). CRF decreased (P < 0.01) in SPE such that POST intervention CRF was significantly lower (P< 0.05) in SPE. Fasting plasma glucose (P < 0.01), insulin (P< 0.01) and HOMA-IR (P< 0.01) increased significantly amongst SPE. The main finding of the present study is that 7-weeks of SIT exercise is an effective method of maintaining (but not improving) CRF and fasting insulin homeostasis amongst school-going adolescents. SIT exercise demonstrates potential as a time efficient physiological adjunct to standard PE class in order to maintain CRF during the school term.  相似文献   
104.

Background  

The integrity of DNA molecules is fundamental for maintaining life. The DNA repair proteins protect organisms against genetic damage, by removal of DNA lesions or helping to tolerate them. DNA repair genes are best known from the gamma-proteobacterium Escherichia coli, which is the most understood bacterial model. However, genome sequencing raises questions regarding uniformity and ubiquity of these DNA repair genes and pathways, reinforcing the need for identifying genes and proteins, which may respond to DNA damage in other bacteria.  相似文献   
105.
The kinetics of apoptosis and the apoptosis-regulating gene p53 in adjuvant arthritis (AA) were investigated to assess the value of the AA rat model for testing apoptosis-inducing therapies. Very few terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end-labeling (TUNEL)-positive cells were detected during the early phases of AA, but on day 23 (chronic arthritis) the percentage of TUNEL-positive cells was significantly increased. Expression of p53 in synovial tissue gradually increased from days 5-23, which was markedly higher than p53 levels in rheumatoid arthritis (RA) synovium. Significant apoptosis only occurs late in rat AA and is concordant with marked p53 overexpression, making it useful model for testing proapoptotic therapies, but rat AA is not the best model for p53 gene therapy because dramatic p53 overexpression occurs in the latter stages of the disease.  相似文献   
106.
107.
The mammalian Hippo signaling pathway, through its effectors YAP and TAZ, coerces epithelial progenitor cell expansion for appropriate tissue development or regeneration upon damage. Its ability to drive rapid tissue growth explains why many oncogenic events frequently exploit this pathway to promote cancer phenotypes. Indeed, several tumor types including basal cell carcinoma (BCC) show genetic aberrations in the Hippo (or YAP/TAZ) regulators. Here, we uncover that while YAP is dispensable for homeostatic epidermal regeneration, it is required for BCC development. Our clonal analyses further demonstrate that the few emerging Yap‐null dysplasia have lower fitness and thus are diminished as they progress to invasive BCC. Mechanistically, YAP depletion in BCC tumors leads to effective impairment of the JNK‐JUN signaling, a well‐established tumor‐driving cascade. Importantly, in this context, YAP does not influence canonical Wnt or Hedgehog signaling. Overall, we reveal Hippo signaling as an independent promoter of BCC pathogenesis and thereby a viable target for drug‐resistant BCC.  相似文献   
108.
109.
Activation of hepatic stellate cells has been recognized as one of the first steps in liver injury and repair. During activation, hepatic stellate cells transform into myofibroblasts with concomitant loss of their lipid droplets (LDs) and production of excessive extracellular matrix. Here we aimed to obtain more insight in the dynamics and mechanism of LD loss. We have investigated the LD degradation processes in rat hepatic stellate cells in vitro with a combined approach of confocal Raman microspectroscopy and mass spectrometric analysis of lipids (lipidomics). Upon activation of the hepatic stellate cells, LDs reduce in size, but increase in number during the first 7 days, but the total volume of neutral lipids did not decrease. The LDs also migrate to cellular extensions in the first 7 days, before they disappear. In individual hepatic stellate cells. all LDs have a similar Raman spectrum, suggesting a similar lipid profile. However, Raman studies also showed that the retinyl esters are degraded more rapidly than the triacylglycerols upon activation. Lipidomic analyses confirmed that after 7 days in culture hepatic stellate cells have lost most of their retinyl esters, but not their triacylglycerols and cholesterol esters. Furthermore, we specifically observed a large increase in triacylglycerol-species containing polyunsaturated fatty acids, partly caused by an enhanced incorporation of exogenous arachidonic acid. These results reveal that lipid droplet degradation in activated hepatic stellate cells is a highly dynamic and regulated process. The rapid replacement of retinyl esters by polyunsaturated fatty acids in LDs suggests a role for both lipids or their derivatives like eicosanoids during hepatic stellate cell activation.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号