首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   19篇
  211篇
  2023年   4篇
  2022年   1篇
  2021年   4篇
  2020年   6篇
  2019年   3篇
  2018年   5篇
  2017年   2篇
  2016年   7篇
  2015年   5篇
  2014年   13篇
  2013年   7篇
  2012年   21篇
  2011年   8篇
  2010年   14篇
  2009年   4篇
  2008年   9篇
  2007年   7篇
  2006年   8篇
  2005年   9篇
  2004年   11篇
  2003年   9篇
  2002年   4篇
  2001年   4篇
  2000年   3篇
  1999年   8篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1986年   3篇
  1985年   4篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
排序方式: 共有211条查询结果,搜索用时 15 毫秒
71.
Synaptic neurotransmitter release is restricted to active zones, where the processes of synaptic vesicle tethering, priming to fusion competence, and Ca2+-triggered fusion are taking place in a highly coordinated manner. We show that the active zone components Munc13-1, an essential vesicle priming protein, and RIM1, a Rab3 effector with a putative role in vesicle tethering, interact functionally. Disruption of this interaction causes a loss of fusion-competent synaptic vesicles, creating a phenocopy of Munc13-1-deficient neurons. RIM1 binding and vesicle priming are mediated by two distinct structural modules of Munc13-1. The Munc13-1/RIM1 interaction may create a functional link between synaptic vesicle tethering and priming, or it may regulate the priming reaction itself, thereby determining the number of fusion-competent vesicles.  相似文献   
72.
Global change alters ecological communities with consequences for ecosystem processes. Such processes and functions are a central aspect of ecological research and vital to understanding and mitigating the consequences of global change, but also those of other drivers of change in organism communities. In this context, the concept of energy flux through trophic networks integrates food‐web theory and biodiversity‐ecosystem functioning theory and connects biodiversity to multitrophic ecosystem functioning. As such, the energy‐flux approach is a strikingly effective tool to answer central questions in ecology and global‐change research. This might seem straight forward, given that the theoretical background and software to efficiently calculate energy flux are readily available. However, the implementation of such calculations is not always straight forward, especially for those who are new to the topic and not familiar with concepts central to this line of research, such as food‐web theory or metabolic theory. To facilitate wider use of energy flux in ecological research, we thus provide a guide to adopting energy‐flux calculations for people new to the method, struggling with its implementation, or simply looking for background reading, important resources, and standard solutions to the problems everyone faces when starting to quantify energy fluxes for their community data. First, we introduce energy flux and its use in community and ecosystem ecology. Then, we provide a comprehensive explanation of the single steps towards calculating energy flux for community data. Finally, we discuss remaining challenges and exciting research frontiers for future energy‐flux research.  相似文献   
73.
74.
Some observations on variant strains of Myxococcus virescens B2 with special emphasis on characteristics associated with the ability to grow in dispersion are reported. The isolated strains were divided into two major classes according to their mode of growth in shaken and static liquid cultures based on casitone and casamino acids media. Strains growing in dispersion were designated D+-strains and those growing in aggregates or as films, D?-strains. Colony morphology, cell morphology, growth in liquid and on solid medium and morphogenesis were compared. The ability to grow in dispersion shown by D+-strains seemed to be associated with a smooth colony on casitone agar, inability to form typical fruiting bodies and a low linear growth rate of colonies on solid medium as compared with the D?-strains. In contrast D?-strains produced rough colonies on casitone agar, were able to fruit and evidently formed an adhesive slime in the form of fibrils extending from the cell surface. It is suggested that the observed differences depend on different envelopes of the cells in the two classes.  相似文献   
75.
76.
77.
Despite the increasing ubiquity of biological invasions worldwide, little is known about the scale-dependent effects of nonnative species on real-world ecological dynamics. Here, using an extensive time series dataset of riverine fish communities across different biogeographic regions of the world, we assessed the effects of nonnative species on the temporal variability and synchrony in abundance at different organizational levels (population, metapopulation, community and metacommunity) and spatial scales (stream reach and river basin). At the reach scale, we found that populations of nonnative species were more variable over time than native species, and that this effect scaled up to the community level – significantly destabilizing the dynamics of riverine fish communities. Nonnative species not only contributed to reduced community stability, but also increased variability of native populations. By contrast, we found no effect of nonnative species dominance on local interspecific synchrony among native species. At the basin scale, nonnative metapopulations were again more variable than the native ones. However, neither native metapopulations nor metacommunities showed differences in temporal variability or synchrony as nonnative species dominance increased basin-wide. This suggests a ‘dilution effect’ where the contribution to regional stability of local native populations from sites displaying low levels of invasion reduced the destabilizing effects of nonnative species. Overall, our results indicate that accounting for the destabilizing effect of nonnative species is critical to understanding native species persistence and community stability.  相似文献   
78.
Recently, the importance of body mass and allometric scaling for the structure and dynamics of ecological networks has been highlighted in several ground‐breaking studies. However, advances in the understanding of generalities across ecosystem types are impeded to a considerable extent by a methodological dichotomy contrasting a considerable portion of marine ecology on the one hand opposite to traditional community ecology on the other hand. Many marine ecologists are bound to the taxonomy‐neglecting size spectrum approach when describing and analysing community patterns. In contrast, the mindset of the other school is focused on taxonomies according to the Linnean system at the cost of obscuring information due to applying species or population averages of body masses and other traits. Following other pioneering studies, we addressed this lingering gap, and studied non‐linear interaction strengths (i.e. functional responses) between two taxonomically‐distinct terrestrial arthropod predators (centipedes and spiders) of varying individual body masses and their prey. We fitted three non‐linear functional response models to the data: (1) a taxonomic model not accounting for variance in body masses amongst predator individuals, (2) an allometric model ignoring taxonomic differences between predator individuals, and (3) a combined model including body mass and taxonomic effects. Ranked according to their AICs, the combined model performs better than the allometric model, which provides a superior fit to the data than the taxonomic model. These results strongly indicate that the body masses of predator and prey individuals were responsible for most of the variation in non‐linear interaction strengths. Taxonomy explained some specific patterns in allometric exponents between groups and revealed mechanistic insights in predation efficiencies. Reconciling quantitative allometric models as employed by the marine size‐spectrum approach with taxonomic information may thus yield quantitative results that are generalized across ecosystem types and taxonomic groups. Using these quantitative models as novel null models should also strengthen subsequent taxonomic analyses.  相似文献   
79.
The distributions of body masses and degrees (i.e. the number of trophic links) across species are key determinants of food‐web structure and dynamics. In particular, allometric degree distributions combining both aspects in the relationship between degrees and body masses are of critical importance for the stability of these complex ecological networks. They describe decreases in vulnerability (i.e. the number of predators) and increases in generality (i.e. the number of prey) with increasing species’ body masses. We used an entirely new global body‐mass database containing 94 food webs from four different ecosystem types (17 terrestrial, 7 marine, 54 lake, 16 stream ecosystems) to analyze (1) body mass distributions, (2) cumulative degree distributions (vulnerability, generality, linkedness), and (3) allometric degree distributions (e.g. generality – body mass relationships) for significant differences among ecosystem types. Our results demonstrate some general patterns across ecosystems: (1) the body masses are often roughly log‐normally (terrestrial and stream ecosystems) or multi‐modally (lake and marine ecosystems) distributed, and (2) most networks exhibit exponential cumulative degree distributions except stream networks that most often possess uniform degree distributions. Additionally, with increasing species body masses we found significant decreases in vulnerability in 70% of the food webs and significant increases in generality in 80% of the food webs. Surprisingly, the slopes of these allometric degree distributions were roughly three times steeper in streams than in the other ecosystem types, which implies that streams exhibit a more pronounced body mass structure. Overall, our analyses documented some striking generalities in the body‐mass (allometric degree distributions of generality and vulnerability) and degree structure (exponential degree distributions) across ecosystem types as well as surprising exceptions (uniform degree distributions in stream ecosystems). This suggests general constraints of body masses on the link structure of natural food webs irrespective of ecosystem characteristics.  相似文献   
80.
CAPS-1 and CAPS-2 are essential synaptic vesicle priming proteins   总被引:5,自引:0,他引:5  
Before transmitter-filled synaptic vesicles can fuse with the plasma membrane upon stimulation they have to be primed to fusion competence. The regulation of this priming process controls the strength and plasticity of synaptic transmission between neurons, which in turn determines many complex brain functions. We show that CAPS-1 and CAPS-2 are essential components of the synaptic vesicle priming machinery. CAPS-deficient neurons contain no or very few fusion competent synaptic vesicles, which causes a selective impairment of fast phasic transmitter release. Increases in the intracellular Ca(2+) levels can transiently revert this defect. Our findings demonstrate that CAPS proteins generate and maintain a highly fusion competent synaptic vesicle pool that supports phasic Ca(2+) triggered release of transmitters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号