Genome-wide association studies (GWAS) have identified multiple single nucleotide polymorphisms (SNPs) associated with prostate cancer risk. However, whether these associations can be consistently replicated, vary with disease aggressiveness (tumor stage and grade) and/or interact with non-genetic potential risk factors or other SNPs is unknown. We therefore genotyped 39 SNPs from regions identified by several prostate cancer GWAS in 10,501 prostate cancer cases and 10,831 controls from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). We replicated 36 out of 39 SNPs (P-values ranging from 0.01 to 10−28). Two SNPs located near KLK3 associated with PSA levels showed differential association with Gleason grade (rs2735839, P = 0.0001 and rs266849, P = 0.0004; case-only test), where the alleles associated with decreasing PSA levels were inversely associated with low-grade (as defined by Gleason grade <8) tumors but positively associated with high-grade tumors. No other SNP showed differential associations according to disease stage or grade. We observed no effect modification by SNP for association with age at diagnosis, family history of prostate cancer, diabetes, BMI, height, smoking or alcohol intake. Moreover, we found no evidence of pair-wise SNP-SNP interactions. While these SNPs represent new independent risk factors for prostate cancer, we saw little evidence for effect modification by other SNPs or by the environmental factors examined. 相似文献
Polyoma virus DNA can be transcribed and translated in an extract of Escherichia coli. Proteolytic digests of the product contain peptides that correspond to peptides from the virion. One of the in vitro synthesized polypeptides corresponds in size to the major virion protein but most of the product is smaller in size than this protein. Although most of the tryptic peptides corresponding to the major virion protein can be detected in the in vitro synthesized polypeptides, all of them also gave rise to other, non-matching, peptides. Much of the in vitro product therefore appears to correspond to incomplete molecules of the major virion protein. 相似文献
We have previously shown that the L-type calcium channel (LCC) antagonist nilvadipine reduces brain amyloid-β (Aβ) accumulation by affecting both Aβ production and Aβ clearance across the blood-brain barrier (BBB). Nilvadipine consists of a mixture of two enantiomers, (+)-nilvadipine and (−)-nilvadipine, in equal proportion. (+)-Nilvadipine is the active enantiomer responsible for the inhibition of LCC, whereas (−)-nilvadipine is considered inactive. Both nilvadipine enantiomers inhibit Aβ production and improve the clearance of Aβ across the BBB showing that these effects are not related to LCC inhibition. In addition, treatment of P301S mutant human Tau transgenic mice (transgenic Tau P301S) with (−)-nilvadipine reduces Tau hyperphosphorylation at several Alzheimer disease (AD) pertinent epitopes. A search for the mechanism of action of (−)-nilvadipine revealed that this compound inhibits the spleen tyrosine kinase (Syk). We further validated Syk as a target-regulating Aβ by showing that pharmacological inhibition of Syk or down-regulation of Syk expression reduces Aβ production and increases the clearance of Aβ across the BBB mimicking (−)-nilvadipine effects. Moreover, treatment of transgenic mice overexpressing Aβ and transgenic Tau P301S mice with a selective Syk inhibitor respectively decreased brain Aβ accumulation and Tau hyperphosphorylation at multiple AD relevant epitopes. We show that Syk inhibition induces an increased phosphorylation of the inhibitory Ser-9 residue of glycogen synthase kinase-3β, a primary Tau kinase involved in Tau phosphorylation, by activating protein kinase A, providing a mechanism explaining the reduction of Tau phosphorylation at GSK3β-dependent epitopes following Syk inhibition. Altogether our data highlight Syk as a promising target for preventing both Aβ accumulation and Tau hyperphosphorylation in AD. 相似文献
This study was undertaken to determine if patients who lack muscle phosphorylase (i.e., McArdle's disease), and therefore the ability to produce lactic acid during exercise, demonstrate a normal hyperventilatory response during progressive incremental exercise. As expected these patients did not increase their blood lactate above resting levels, whereas the blood lactate levels of normal subjects increased 8- to 10-fold during maximal exercise. The venous pH of the normal subjects decreased markedly during exercise that resulted in hyperventilation. The patients demonstrated a distinct increase in ventilation with respect to O2 consumption similar to that seen in normal individuals during submaximal exercise. However their hyperventilation resulted in an increase in pH because there was no underlying metabolic acidosis. End-tidal partial pressures of O2 and CO2 also reflected a distinct hyperventilation in both groups at approximately 70-85% maximal O2 consumption. These data show that hyperventilation occurs during intense exercise, even when there is no increase in plasma [H+]. Since arterial CO2 levels were decreasing and O2 levels were increasing during the hyperventilation, it is possible that nonhumoral stimuli originating in the active muscles or in the brain elicit the hyperventilation observed during intense exercise. 相似文献
This study investigated the numerical convergence characteristics of specimen-specific "voxel-based" finite element models of 14 excised human cadaveric lumbar vertebral bodies (age: 37-87; M = 6, F = 8) that were generated automatically from clinical-type CT scans. With eventual clinical applications in mind, the ability of the model stiffness to predict the experimentally measured compressive fracture strength of the vertebral bodies was also assessed. The stiffness of "low"-resolution models (3 x 3 x 3 mm element size) was on average only 4% greater (p = 0.03) than for "high"-resolution models (1 x 1 x 1.5 mm) despite interspecimen variations that varied over four-fold. Damage predictions using low- vs high-resolution models were significantly different (p = 0.01) at loads corresponding to an overall strain of 0.5%. Both the high (r2 = 0.94) and low (r2 = 0.92) resolution model stiffness values were highly correlated with the experimentally measured ultimate strength values. Because vertebral stiffness variations in the population are much greater than those that arise from differences in voxel size, these results indicate that imaging resolution is not critical in cross-sectional studies of this parameter. However, longitudinal studies that seek to track more subtle changes in stiffness over time should account for the small but highly significant effects of voxel size. These results also demonstrate that an automated voxel-based finite element modeling technique may provide an excellent noninvasive assessment of vertebral strength. 相似文献
Search of the protein database with the aflatoxin pathway polyketide synthase (PKS) revealed putative PKSs in the pathogenic fungi Coccidioides immitis and Coccidioides posadasii that could require partnerships with a pair of fatty acid synthase (FAS) subunits for the biosynthesis of fatty acid-polyketide hybrid metabolites. A starter unit:acyl-carrier protein transacylase (SAT) domain was discovered in the nonreducing PKS. This domain is thought to accept the fatty acid product from the FAS to initiate polyketide synthesis. We expressed the C. immitis SAT domain in Escherichia coli and showed that this domain, unlike that from the aflatoxin pathway PKS, transferred octanoyl-CoA four times faster than hexanoyl-CoA. The SAT domain also formed a covalent octanoyl intermediate and transferred this group to a free-standing ACP domain. Our results suggest that C. immitis/posadasii, both human fungal pathogens, contain a FAS/PKS cluster with functional similarity to the aflatoxin cluster found in Aspergillus species. Dissection of the PKS and determination of in vitro SAT domain specificity provides a tool to uncover the growing number of similar sequenced pathways in fungi, and to guide elucidation of the fatty acid-polyketide hybrid metabolites that they produce. 相似文献
A study was designed to (a) identify sources and sinks of N in the maize (Zea mays L.) shoot, by estimating net N fluxes for each of seven parts of the shoot, (b) determine effects of N entering the plant upon fluxes of N absorbed before reproductive growth, and (c) determine the effects of the opaque-2 gene on N fluxes in the maize shoot during early reproductive growth. Plants of a maize hybrid (Pioneer 3369A) and its opaque-2 counterpart (Pioneer L3369) were grown in a greenhouse using nutrient solution/sand culture, with NO3− as the N source during the vegetative growth phase. Beginning at the time of pollination, the same nutrient regime was continued, except that some plants received no N, and others received 3.75 millimolar 15N as NO3−-N.
Stalk and leaves were found to be primary N sources for the grain, while shank, husk, and cob acted first as N sinks, then as N sources during reproductive growth. Net fluxes of N for each plant part were estimated by calculating the first derivatives of regression equations used to fit data for N contents of each plant part as functions of time. All parts of the shoot were sinks for exogenous N (absorbed after pollination). Thirty-six days after pollination, the grain contained 60% endogenous N (absorbed before pollination) when 3.75 millimolar NO3−-N was supplied after pollination. Rates of total N influx to the grain were identical whether or not N was supplied in the nutrient solution during reproductive growth. At 36 days after pollination, less N had accumulated in the grain of the opaque-2 genotype, but otherwise there were no differences in N contents or dry weights of the shoots due to the opaque-2 gene. Absence of N from the rooting medium significantly affected N fluxes throughout the shoot during reproductive growth, but there were no detectable effects of the opaque-2 gene on N fluxes in parts of the plant other than the grain.
Secondary metabolites produced by nonribosomal peptide synthetase (NRPS) or polyketide synthase (PKS) pathways are chemical mediators of microbial interactions in diverse environments. However, little is known about their distribution, evolution, and functional roles in bacterial symbionts associated with animals. A prominent example is colibactin, a largely unknown family of secondary metabolites produced by Escherichia coli via a hybrid NRPS-PKS biosynthetic pathway that inflicts DNA damage upon eukaryotic cells and contributes to colorectal cancer and tumor formation in the mammalian gut. Thus far, homologs of this pathway have only been found in closely related Enterobacteriaceae, while a divergent variant of this gene cluster was recently discovered in a marine alphaproteobacterial Pseudovibrio strain. Herein, we sequenced the genome of Frischella perrara PEB0191, a bacterial gut symbiont of honey bees and identified a homologous colibactin biosynthetic pathway related to those found in Enterobacteriaceae. We show that the colibactin genomic island (GI) has conserved gene synteny and biosynthetic module architecture across F. perrara, Enterobacteriaceae, and the Pseudovibrio strain. Comparative metabolomics analyses of F. perrara and E. coli further reveal that these two bacteria produce related colibactin pathway-dependent metabolites. Finally, we demonstrate that F. perrara, like E. coli, causes DNA damage in eukaryotic cells in vitro in a colibactin pathway-dependent manner. Together, these results support that divergent variants of the colibactin biosynthetic pathway are widely distributed among bacterial symbionts, producing related secondary metabolites and likely endowing its producer with functional capabilities important for diverse symbiotic associations. 相似文献
Epstein-Barr virus (EBV) is a human herpesvirus which infects almost all of the world's population subclinically during childhood and thereafter remains in the body for life. The virus colonizes antibody-producing (B) cells, which, as relatively long-lived resting cells, are an ideal site for long-term residence. Here EBV evades recognition and destruction by cytotoxic T cells. EBV is passed to naive hosts in saliva, but how the virus gains access to this route of transmission is not entirely clear. EBV carries a set of latent genes that, when expressed in resting B cells, induce cell proliferation and thereby increase the chances of successful virus colonization of the B-cell system during primary infection and the establishment of persistence. However, if this cell proliferation is not controlled, or if it is accompanied by additional genetic events within the infected cell, it can lead to malignancy. Thus EBV acts as a step in the evolution of an ever-increasing list of malignancies which are broadly of lymphoid or epithelial cell origin. In some of these, such as B-lymphoproliferative disease in the immunocompromised host, the role of the virus is central and well defined; in others, such as Burkitt's lymphoma, essential cofactors have been identified which act in concert with EBV in the evolution of the malignant clone. However, in several diseases in which the presence of EBV has more recently been discovered, the role of the virus is unclear. This review describes recent views on the EBV life cycle and its interlinks with normal B-cell biology, and discusses how this interrelationship may be upset and result in EBV-associated disease. 相似文献
Although it is generally held that panting is a physiological mechanism for the regulation of brain temperature during heat stress, a number of studies have pointed to the importance of peripheral input for the initiation of the panting response in a variety of animals. By presenting ambient heat loads of 47 degrees, 54 degrees, 58 degrees, and 65 degrees C, and measuring skin, ear and core temperatures of the desert iguana, Dipsosaurus dorsalis, at the onset of panting, we found that the skin temperature at panting onset was independent of ambient heat load. This suggests that skin (peripheral) temperature is the body temperature on which the central thermoregulatory center cues to initiate thermal panting. Peripheral temperature control of panting was retained when the plasma osmolality of the desert iguana was increased by 100 mOsm/kg H2O to simulate dehydration. Dehydration to 80% initial body weight (IBW) resulted in a progressive increase in panting threshold (skin) from 42 degrees C for untreated lizards to 42.5 degrees C at 90% IBW to 43.3 degrees C at 80% IBW. Injection of 80% IBW lizards with a volume of 10 mM NaCl equivalent to weight loss resulted in a decrease in panting threshold to 40.8 degrees C. Injection with 1% body weight 3000 mM NaCl produced a dramatic increase in panting threshold to 45.9 degrees C. These data suggest that the desert iguana responds to dehydration by elevating panting threshold, thus promoting water conservation. These data also suggest that changes in plasma osmolality may be involved in the "setting" of panting threshold. 相似文献