首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   13篇
  152篇
  2021年   2篇
  2019年   3篇
  2017年   4篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   6篇
  2011年   4篇
  2010年   6篇
  2009年   6篇
  2008年   1篇
  2006年   1篇
  2005年   2篇
  2003年   4篇
  2002年   1篇
  2001年   6篇
  2000年   1篇
  1999年   7篇
  1998年   3篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   6篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   7篇
  1980年   2篇
  1979年   10篇
  1978年   12篇
  1977年   4篇
  1975年   1篇
  1974年   5篇
  1973年   1篇
  1969年   1篇
  1958年   2篇
  1957年   1篇
  1928年   1篇
排序方式: 共有152条查询结果,搜索用时 15 毫秒
41.
Although many secondary metabolites with diverse biological activities have been isolated from myxobacteria, most strains of these biotechnologically important gliding prokaryotes remain difficult to handle genetically. In this study we describe the new fast growing myxobacterial thermophilic isolate GT-2 as a heterologous host for the expression of natural product biosynthetic pathways isolated from other myxobacteria. According to the results of sequence analysis of the 16S rDNA, this moderately thermophilic isolate is closely related to Corallococcus macrosporus and was therefore named C. macrosporus GT-2. Fast growth of moderately thermophilic strains results in shorter fermentation and generation times, aspects which are of significant interest for molecular biological work as well as production of secondary metabolites. Development of a genetic manipulation system allowed the introduction of the complete myxochromide biosynthetic gene cluster, located on a transposable fragment, into the chromosome of GT-2. Genetic engineering of the biosynthetic gene cluster by promoter exchange leads to much higher production of myxochromides in the heterologous host C. macrosporus GT-2 in comparison to the original producer Stigmatella aurantiaca and to the previously described heterologous host Pseudomonas putida (600 mg/L versus 8 mg/L and 40 mg/L, respectively).  相似文献   
42.
43.
44.

Background  

The assembly and spatial organization of enzymes in naturally occurring multi-protein complexes is of paramount importance for the efficient degradation of complex polymers and biosynthesis of valuable products. The degradation of cellulose into fermentable sugars by Clostridium thermocellum is achieved by means of a multi-protein "cellulosome" complex. Assembled via dockerin-cohesin interactions, the cellulosome is associated with the cell surface during cellulose hydrolysis, forming ternary cellulose-enzyme-microbe complexes for enhanced activity and synergy. The assembly of recombinant cell surface displayed cellulosome-inspired complexes in surrogate microbes is highly desirable. The model organism Lactococcus lactis is of particular interest as it has been metabolically engineered to produce a variety of commodity chemicals including lactic acid and bioactive compounds, and can efficiently secrete an array of recombinant proteins and enzymes of varying sizes.  相似文献   
45.
A dramatic difference is observed in the intracellular distribution of the high mobility group (HMG) proteins when chicken embryo fibroblasts are fractionated into nucleus and cytoplasm by either mass enucleation of cytochalasin-B-treated cells or by differential centrifugation of mechanically disrupted cells. Nuclei (karyoplasts) obtained by cytochalasin B treatment of cells contain more than 90 percent of the HMG 1, while enucleated cytoplasts contain the remainder. A similar distribution between karyoplasts and cytoplasts is observed for the H1 histones and the nucleosomal core histones as anticipated. The presence of these proteins, in low amounts, in the cytoplast preparation can be accounted for by the small percentage of unenucleated cells present. In contrast, the nuclei isolated from mechanically disrupted cells contain only 30-40 percent of the total HMGs 1 and 2, the remainder being recovered in the cytosol fraction. No histone is observed in the cytosol fraction. Unike the higher molecular weight HMGs, most of the HMGs 14 and 17 sediment with the nuclei after cell lysis by mechanical disruption. The distribution of HMGs is unaffected by incubating cells with cytochalasin B and mechanically fractionating rather than enucleating them. Therefore, the dramatic difference in HMG 1 distribution observed using the two fractionation techniques cannot be explained by a cytochalasin-B-induced redistribution. On reextraction and sedimentation of isolated nuclei obtained by mechanical cell disruption, only 8 percent of the HMG 1 is released to the supernate. Thus, the majority of the HMG 1 originally isolated with these nuclei, representing 35 percent of the total HMG 1, is stably bound, as is all the HMGs 14 and 17. The remaining 65 percent of the HMGs 1 and 2 is unstably bound and leaks to the cytosol fraction under the conditions of mechanical disruption. It is suggested that the unstably bound HMGs form a protein pool capable of equilibrating between cytoplasm and stably bound HMGs.  相似文献   
46.
47.
48.
49.
Summary The uptake of Mn from manganous ions (Mn-ions) and pyrolusite (MnO2) by three week-old oat plants (Avena sativa L.) grown in nutrient solutions controlled at pH values between 6 and 8, was almost completely inhibited by suspensions of Mn- oxidizing bacteria over a three day uptake period.Grey speck symptoms of Mn deficiency developed in oats grown for 10 days with Mn bacteria in a nutrient solution that had received 1 ppm Mn ions and was controlled at pH 6.3. Rape plants (Brassica napus L.) absorbed appreciable amounts of Mn from treatments similar to those that inhibited Mn uptake by oats.Treatments which decreased or prevented biological oxidation of Mn ions favoured the uptake of Mn by oats from Mn ions, MnO2 and bacterial Mn-oxide. Acid conditions (pH 5.0) always increased Mn uptake. This was due in part to inhibition of bacterial oxidation and to an increase in the ability of the plants to obtain Mn from Mn oxides.Uptake of Mn is explained on the basis of the rates of two opposing processes; the rate of release of Mn from oxides and the rate of biological oxidation of Mn ions. The results are discussed in relation to the availability of Mn in soils.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号