首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   34篇
  2021年   3篇
  2019年   1篇
  2018年   6篇
  2017年   2篇
  2016年   3篇
  2015年   8篇
  2014年   12篇
  2013年   11篇
  2012年   6篇
  2011年   3篇
  2010年   11篇
  2009年   6篇
  2008年   8篇
  2007年   6篇
  2006年   13篇
  2005年   8篇
  2004年   9篇
  2003年   7篇
  2002年   3篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1975年   2篇
  1974年   3篇
  1970年   1篇
排序方式: 共有156条查询结果,搜索用时 15 毫秒
111.
112.
When L929 cells are exposed to 5 μg/ml dexamethasone, synthesis of a 90,000 M(r) polypeptide is induced within 12 h. Flattening of the cells begins at about this time and progresses to become quite prominent after 48 h of exposure. Two-dimensional PAGE and partial proteolytic fingerprints identify the 90,000 M(r) polypeptide as gelsolin, a Ca(++)-dependent inhibitor of actin polymerization. Thus, this system provides evidence that gelsolin may have a role in regulating cell shape in response to physiological agents such as glucocorticoids.  相似文献   
113.
This open-label, phase I/II study investigated the safety and efficacy of epratuzumab, a humanised anti-CD22 monoclonal antibody, in the treatment of patients with active primary Sjögren's syndrome (pSS). Sixteen Caucasian patients (14 females/2 males, 33–72 years) were to receive 4 infusions of 360 mg/m2 epratuzumab once every 2 weeks, with 6 months of follow-up. A composite endpoint involving the Schirmer-I test, unstimulated whole salivary flow, fatigue, erythrocyte sedimentation rate (ESR), and immunoglobulin G (IgG) was devised to provide a clinically meaningful assessment of response, defined as a ≥20% improvement in at least two of the aforementioned parameters, with ≥20% reduction in ESR and/or IgG considered as a single combined criterion. Fourteen patients received all infusions without significant reactions, 1 patient received 3, and another was discontinued due to a mild acute reaction after receiving a partial infusion. Three patients showed moderately elevated levels of Human anti-human (epratuzumab) antibody not associated with clinical manifestations. B-cell levels had mean reductions of 54% and 39% at 6 and 18 weeks, respectively, but T-cell levels, immunoglobulins, and routine safety laboratory tests did not change significantly. Fifty-three percent achieved a clinical response (at ≥20% improvement level) at 6 weeks, with 53%, 47%, and 67% responding at 10, 18, and 32 weeks, respectively. Approximately 40%–50% responded at the ≥30% level, while 10%–45% responded at the ≥50% level for 10–32 weeks. Additionally, statistically significant improvements were observed in fatigue, and patient and physician global assessments. Further, we determined that pSS patients have a CD22 over-expression in their peripheral B cells, which was downregulated by epratuzumab for at least 12 weeks after the therapy. Thus, epratuzumab appears to be a promising therapy in active pSS, suggesting that further studies be conducted.  相似文献   
114.
We have after half a century of coordinated scientific drilling gained insight into Earth´s largest microbial habitat, the subseafloor igneous crust, but still lack substantial understanding regarding its abundance, diversity and ecology. Here we describe a fossilized microbial consortium of prokaryotes and fungi at the basalt-zeolite interface of fractured subseafloor basalts from a depth of 240 m below seafloor (mbsf). The microbial consortium and its relationship with the surrounding physical environment are revealed by synchrotron-based X-ray tomographic microscopy (SRXTM), environmental scanning electron microscopy (ESEM), and Raman spectroscopy. The base of the consortium is represented by microstromatolites—remains of bacterial communities that oxidized reduced iron directly from the basalt. The microstromatolites and the surrounding basalt were overlaid by fungal cells and hyphae. The consortium was overgrown by hydrothermally formed zeolites but remained alive and active during this event. After its formation, fungal hyphae bored in the zeolite, producing millimetre-long tunnels through the mineral substrate. The dissolution could either serve to extract metals like Ca, Na and K essential for fungal growth and metabolism, or be a response to environmental stress owing to the mineral overgrowth. Our results show how microbial life may be maintained in a nutrient-poor and extreme environment by close ecological interplay and reveal an effective strategy for nutrient extraction from minerals. The prokaryotic portion of the consortium served as a carbon source for the eukaryotic portion. Such an approach may be a prerequisite for prokaryotic-eukaryotic colonisation of, and persistence in, subseafloor igneous crust.  相似文献   
115.
In less than 3 months after the first cases of swine origin 2009 influenza A (H1N1) virus infections were reported from Mexico, WHO declared a pandemic. The pandemic virus is antigenically distinct from seasonal influenza viruses, and the majority of human population lacks immunity against this virus. We have studied the activation of innate immune responses in pandemic virus-infected human monocyte-derived dendritic cells (DC) and macrophages. Pandemic A/Finland/553/2009 virus, representing a typical North American/European lineage virus, replicated very well in these cells. The pandemic virus, as well as the seasonal A/Brisbane/59/07 (H1N1) and A/New Caledonia/20/99 (H1N1) viruses, induced type I (alpha/beta interferon [IFN-α/β]) and type III (IFN-λ1 to -λ3) IFN, CXCL10, and tumor necrosis factor alpha (TNF-α) gene expression weakly in DCs. Mouse-adapted A/WSN/33 (H1N1) and human A/Udorn/72 (H3N2) viruses, instead, induced efficiently the expression of antiviral and proinflammatory genes. Both IFN-α and IFN-β inhibited the replication of the pandemic (H1N1) virus. The potential of IFN-λ3 to inhibit viral replication was lower than that of type I IFNs. However, the pandemic virus was more sensitive to the antiviral IFN-λ3 than the seasonal A/Brisbane/59/07 (H1N1) virus. The present study demonstrates that the novel pandemic (H1N1) influenza A virus can readily replicate in human primary DCs and macrophages and efficiently avoid the activation of innate antiviral responses. It is, however, highly sensitive to the antiviral actions of IFNs, which may provide us an additional means to treat severe cases of infection especially if significant drug resistance emerges.The novel swine origin 2009 influenza A (H1N1) virus was identified in April 2009, and it is currently causing the first influenza pandemic of the 21st century. The virus is a completely new reassortant virus (8, 38), and the majority of the human population does not have preexisting immunity against it. The case fatality rate of the current pandemic virus infection is still unclear, but it is estimated to be somewhat higher than that of seasonal influenza virus infections (8). In most cases, the pandemic 2009 A (H1N1) virus causes an uncomplicated respiratory tract illness with symptoms similar to those caused by seasonal influenza viruses. However, gastrointestinal symptoms atypical to seasonal influenza have been detected in a significant proportion of cases (4, 7, 35).The pandemic 2009 (H1N1) influenza A virus originates from a swine influenza A virus strain. It underwent multiple reassortment events in pigs and then transferred into the human population (8, 38). The new virus has gene segments from the North American triple-reassortant and Eurasian swine H1N1 viruses (8, 38). Sequence analysis of this new pandemic virus revealed that hemagglutinin (HA), NP, and NS gene segments are derived from the classical swine viruses, PB1 from human H3N2, and PB2 and PA from avian viruses within the triple-reassortant virus (8). In addition, the NA and M segments originate from the Eurasian swine virus lineage. The pandemic 2009 (H1N1) virus is genetically and antigenically distinct from previous seasonal human influenza A (H1N1) viruses. Thus, the current seasonal influenza vaccines are likely to give little, if any, protection against pandemic 2009 A (H1N1) virus infection (12, 14). However, some evidence indicates that people born early in the 20th century have cross-neutralizing antibodies against the pandemic 2009 A (H1N1) viruses (12, 14).At present, relatively little is known about the pathogenesis and transmission of the pandemic 2009 A (H1N1) virus in humans. Studies with ferrets revealed that the pandemic virus replicated better than seasonal H1N1 viruses in the respiratory tracts of the animals. This suggests that the virus is more pathogenic in ferrets than seasonal influenza viruses (19, 24). The respiratory tract is the primary infection site of all mammalian influenza viruses, and, indeed, the specific glycan receptors on the apical surface of the upper respiratory tract have been reported to bind HA of the 2009 A (H1N1) virus (19). In human lung tissue binding assays, 2009 A (H1N1) HA showed a glycan binding pattern similar to that of the HA from the pandemic 1918 A (H1N1) virus though its affinity to α2,6 glycans was much lower than that of the 1918 virus HA. The lower glycan binding properties of the pandemic 2009 A (H1N1) virus seemed to correlate with less-efficient transmission in ferrets compared to seasonal H1N1 viruses (19). According to another study with ferrets, the transmission of the pandemic 2009 A (H1N1) virus via respiratory droplets was as efficient as that of a seasonal A (H1N1) virus (24). It is clear that, besides experimental infections in animal models, analyses of the characters and pathogenesis of the pandemic 2009 A (H1N1) virus infection in humans are urgently needed.In the present study, we have focused on analyzing innate immune responses in primary human dendritic cells (DCs) and macrophages in response to an infection with one of the Finnish isolates of the pandemic 2009 A (H1N1) virus. DCs and macrophages reside beneath the epithelium of the respiratory organs, and these cells are thus potential targets for influenza viruses. From the epithelial cells influenza viruses spread in DCs and macrophages, which coordinate the development of an effective innate immune response against the virus (22, 34, 41). During influenza virus infection, DCs and macrophages secrete antiviral cytokines such as interferons (IFNs) and tumor necrosis factor alpha (TNF-α) (3, 13, 26). Moreover, DCs and macrophages activate virus-destroying NK cells and T cells with the cytokines they secrete and via direct cell-to-cell contacts (9, 29, 33, 37). Here we show that the pandemic (H1N1) virus infects and replicates very well in human monocyte-derived DCs and macrophages. The pandemic virus as well as two recent seasonal H1N1 viruses induced a relatively weak innate immune response in these cells, as evidenced by a poor expression of antiviral and proinflammatory cytokine genes. However, like seasonal influenza A viruses, the pandemic 2009 (H1N1) virus was extremely sensitive to the antiviral actions of type I IFNs (IFN-α/β). Interestingly, the pandemic 2009 (H1N1) virus was even more sensitive to antiviral IFN-λ3 than a seasonal A (H1N1) virus. Thus, IFNs may provide us with an additional means to combat severe pandemic influenza virus infections, especially if viral resistance against neuraminidase (NA) inhibitors begins to emerge.  相似文献   
116.
Psoriasis is a frequently occurring inflammatory skin disease characterized by thickened erythematous skin that is covered with silvery scales. It is a complex genetic disease with both heritable and environmental factors contributing to onset and severity. The CD18 hypomorphic PL/J mouse reveals reduced expression of the common chain of beta(2) integrins (CD11/CD18) and spontaneously develops a skin disease that closely resembles human psoriasis. In contrast, CD18 hypomorphic C57BL/6J mice do not demonstrate this phenotype. In this study, we have performed a genome-wide scan to identify loci involved in psoriasiform dermatitis under the condition of low CD18 expression. Backcross analysis of a segregating cross between susceptible CD18 hypomorphic PL/J mice and the resistant CD18 hypomorphic C57BL/6J strain was performed. A genome-wide linkage analysis of 94 phenotypically extreme mice of the backcross was undertaken. Thereafter, a complementary analysis of the regions of interest from the genome-wide screen was done using higher marker density and further mice. We found two loci on chromosome 10 that were significantly linked to the disease and interacted in an additive fashion in its development. In addition, a locus on chromosome 6 that promoted earlier onset of the disease was identified in the most severely affected mice. For the first time, we have identified genetic regions associated with psoriasis in a mouse model resembling human psoriasis. The identification of gene regions associated with psoriasis in this mouse model might contribute to the understanding of genetic causes of psoriasis in patients and pathological mechanisms involved in development of disease.  相似文献   
117.
Manichaikul A  Dupuis J  Sen S  Broman KW 《Genetics》2006,174(1):481-489
The aim of many genetic studies is to locate the genomic regions (called quantitative trait loci, QTL) that contribute to variation in a quantitative trait (such as body weight). Confidence intervals for the locations of QTL are particularly important for the design of further experiments to identify the gene or genes responsible for the effect. Likelihood support intervals are the most widely used method to obtain confidence intervals for QTL location, but the nonparametric bootstrap has also been recommended. Through extensive computer simulation, we show that bootstrap confidence intervals behave poorly and so should not be used in this context. The profile likelihood (or LOD curve) for QTL location has a tendency to peak at genetic markers, and so the distribution of the maximum-likelihood estimate (MLE) of QTL location has the unusual feature of point masses at genetic markers; this contributes to the poor behavior of the bootstrap. Likelihood support intervals and approximate Bayes credible intervals, on the other hand, are shown to behave appropriately.  相似文献   
118.
In order to determine the occurrence and frequency of resistant strains of the bacterium Campylobacter jejuni and to establish baseline MICs in isolates from an environmental reservoir, the resistance profiles of 10 antimicrobial substances were determined for 137 C. jejuni isolates from wild birds in Sweden. Observed MICs were generally low, with only low to moderate incidence of resistance to the tested compounds. One isolate, however, was resistant to nalidixic acid and ciprofloxacin, indicating that quinolone-resistant genotypes of C. jejuni have the potential to spread to wild bird hosts.  相似文献   
119.
An investigator planning a QTL (quantitative trait locus) experiment has to choose which strains to cross, the type of cross, genotyping strategies, and the number of progeny to raise and phenotype. To help make such choices, we have developed an interactive program for power and sample size calculations for QTL experiments, R/qtlDesign. Our software includes support for selective genotyping strategies, variable marker spacing, and tools to optimize information content subject to cost constraints for backcross, intercross, and recombinant inbred lines from two parental strains. We review the impact of experimental design choices on the variance attributable to a segregating locus, the residual error variance, and the effective sample size. We give examples of software usage in real-life settings. The software is available at .  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号