首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   456篇
  免费   60篇
  2022年   2篇
  2021年   7篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   3篇
  2016年   8篇
  2015年   8篇
  2014年   17篇
  2013年   28篇
  2012年   19篇
  2011年   27篇
  2010年   18篇
  2009年   14篇
  2008年   26篇
  2007年   30篇
  2006年   18篇
  2005年   28篇
  2004年   21篇
  2003年   18篇
  2002年   24篇
  2001年   14篇
  2000年   21篇
  1999年   13篇
  1998年   8篇
  1997年   5篇
  1995年   2篇
  1993年   4篇
  1992年   9篇
  1991年   4篇
  1990年   9篇
  1989年   5篇
  1988年   9篇
  1987年   7篇
  1986年   7篇
  1985年   6篇
  1984年   6篇
  1983年   3篇
  1982年   7篇
  1980年   5篇
  1979年   8篇
  1978年   6篇
  1976年   4篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1972年   6篇
  1971年   4篇
  1970年   4篇
  1930年   1篇
排序方式: 共有516条查询结果,搜索用时 15 毫秒
21.
Disruption of peripheral circadian rhyme pathways dominantly leads to metabolic disorders. Studies on circadian rhythm proteins in the heart indicated a role for Clock or Per2 in cardiac metabolism. In contrast to Clock−/−, Per2−/− mice have larger infarct sizes with deficient lactate production during myocardial ischemia. To test the hypothesis that cardiac Per2 represents an important regulator of cardiac metabolism during myocardial ischemia, we measured lactate during reperfusion in Per1−/−, Per2−/− or wildtype mice. As lactate measurements in whole blood indicated an exclusive role of Per2 in controlling lactate production during myocardial ischemia, we next performed gene array studies using various ischemia-reperfusion protocols comparing wildtype and Per2−/− mice. Surprisingly, high-throughput gene array analysis revealed dominantly lipid metabolism as the differentially regulated pathway in wildtype mice when compared to Per2−/−. In all ischemia-reperfusion protocols used, the enzyme enoyl-CoA hydratase, which is essential in fatty acid beta-oxidation, was regulated in wildtype animals only. Studies using nuclear magnet resonance imaging (NMRI) confirmed altered fatty acid populations with higher mono-unsaturated fatty acid levels in hearts from Per2−/− mice. Unexpectedly, studies on gene regulation during reperfusion revealed solely pro inflammatory genes as differentially regulated ‘Per2-genes’. Subsequent studies on inflammatory markers showed increasing IL-6 or TNFα levels during reperfusion in Per2−/− mice. In summary, these studies reveal an important role of cardiac Per2 for fatty acid metabolism and inflammation during myocardial ischemia and reperfusion, respectively.  相似文献   
22.
Most currently available small molecule inhibitors of DNA replication lack enzymatic specificity, resulting in deleterious side effects during use in cancer chemotherapy and limited experimental usefulness as mechanistic tools to study DNA replication. Towards development of targeted replication inhibitors, we have focused on Mcm2-7 (minichromosome maintenance protein 2–7), a highly conserved helicase and key regulatory component of eukaryotic DNA replication. Unexpectedly we found that the fluoroquinolone antibiotic ciprofloxacin preferentially inhibits Mcm2-7. Ciprofloxacin blocks the DNA helicase activity of Mcm2-7 at concentrations that have little effect on other tested helicases and prevents the proliferation of both yeast and human cells at concentrations similar to those that inhibit DNA unwinding. Moreover, a previously characterized mcm mutant (mcm4chaos3) exhibits increased ciprofloxacin resistance. To identify more potent Mcm2-7 inhibitors, we screened molecules that are structurally related to ciprofloxacin and identified several that compromise the Mcm2-7 helicase activity at lower concentrations. Our results indicate that ciprofloxacin targets Mcm2-7 in vitro, and support the feasibility of developing specific quinolone-based inhibitors of Mcm2-7 for therapeutic and experimental applications.  相似文献   
23.
Humans and other higher primates are unique among mammals in using complement receptor 1 (CR1, CD35) on red blood cells (RBC) to ligate complement-tagged inflammatory particles (immune complexes, apoptotic/necrotic debris, and microbes) in the circulation for quiet transport to the sinusoids of spleen and liver where resident macrophages remove the particles, but allow the RBC to return unharmed to the circulation. This process is called immune-adherence clearance. In this study we found using luminometric- and fluorescence-based methods that ligation of CR1 on human RBC promotes ATP release. Our data show that CR1-mediated ATP release does not depend on Ca2+ or enzymes previously shown to mediate an increase in membrane deformability promoted by CR1 ligation. Furthermore, ATP release following CR1 ligation increases the mobility of the lipid fraction of RBC membranes, which in turn facilitates CR1 clustering, and thereby enhances the binding avidity of complement-opsonized particles to the RBC CR1. Finally, we have found that RBC-derived ATP has a stimulatory effect on phagocytosis of immune-adherent immune complexes.  相似文献   
24.
Stem cells are needed for an increasing number of scientific applications, including both fundamental research and clinical disease treatment. To meet this rising demand, improved expansion methods to generate high quantities of high quality stem cells must be developed. Unfortunately, the bicarbonate buffering system – which relies upon an elevated CO2 environment – typically used to maintain pH in stem cell cultures introduces several unnecessary limitations in bioreactor systems. In addition to artificially high dissolved CO2 levels negatively affecting cell growth, but more importantly, the need to sparge CO2 into the system complicates the ability to control culture parameters. This control is especially important for stem cells, whose behavior and phenotype is highly sensitive to changes in culture conditions such as dissolved oxygen and pH. As a first step, this study developed a buffer to support expansion of mesenchymal stem cells (MSC) under an atmospheric CO2 environment in static cultures. MSC expanded under atmospheric CO2 with this buffer achieved equivalent growth rates without adaptation compared to those grown in standard conditions and also maintained a stem cell phenotype, self‐renewal properties, and the ability to differentiate into multiple lineages after expansion. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1298–1306, 2013  相似文献   
25.
Serous epithelial ovarian cancer (EOC) patients often succumb to aggressive metastatic disease, yet little is known about the behavior and genetics of ovarian cancer metastasis. Here, we aim to understand how omental metastases differ from primary tumors and how these differences may influence chemotherapy. We analyzed the miRNA expression profiles of primary EOC tumors and their respective omental metastases from 9 patients using miRNA Taqman qPCR arrays. We find 17 miRNAs with differential expression in omental lesions compared to primary tumors. miR-21, miR-150, and miR-146a have low expression in most primary tumors with significantly increased expression in omental lesions, with concomitant decreased expression of predicted mRNA targets based on mRNA expression. We find that miR-150 and miR-146a mediate spheroid size. Both miR-146a and miR-150 increase the number of residual surviving cells by 2–4 fold when challenged with lethal cisplatin concentrations. These observations suggest that at least two of the miRNAs, miR-146a and miR-150, up-regulated in omental lesions, stimulate survival and increase drug tolerance. Our observations suggest that cancer cells in omental tumors express key miRNAs differently than primary tumors, and that at least some of these microRNAs may be critical regulators of the emergence of drug resistant disease.  相似文献   
26.
Acute, inflammatory conditions associated with dysregulated complement activation are characterized by significant increases in blood concentration of reactive oxygen species (ROS) and ATP. The mechanisms by which these molecules arise are not fully understood. In this study, using luminometric- and fluorescence-based methods, we show that ligation of glycophorin A (GPA) on human red blood cells (RBCs) results in a 2.1-fold, NADPH-oxidase-dependent increase in intracellular ROS that, in turn, trigger multiple downstream cascades leading to caspase-3 activation, ATP release, and increased band 3 phosphorylation. Functionally, using 2D microchannels to assess membrane deformability, GPS-ligated RBCs travel 33% slower than control RBCs, and lipid mobility was hindered by 10% using fluorescence recovery after photobleaching (FRAP). These outcomes were preventable by pretreating RBCs with cell-permeable ROS scavenger glutathione monoethyl ester (GSH-ME). Our results obtained in vitro using anti-GPA antibodies were validated using complement-altered RBCs isolated from control and septic patients. Our results suggest that during inflammatory conditions, circulating RBCs significantly contribute to capillary flow dysfunctions, and constitute an important but overlooked source of intravascular ROS and ATP, both critical mediators responsible for endothelial cell activation, microcirculation impairment, platelet activation, as well as long-term dysregulated adaptive and innate immune responses.  相似文献   
27.
28.
29.
The misfolding of the triple helix has been shown to play a critical role in collagen diseases. Normal and mutated collagen triple helices can be modeled by short, synthetic peptides of varying design. NMR spectroscopy and circular dichroism studies on the assembly of these peptide models have recently been used to isolate specific steps in the folding pathway and have provided information on the alterations resulting from mutations.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号