首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   33篇
  国内免费   2篇
  160篇
  2022年   1篇
  2021年   3篇
  2019年   2篇
  2018年   2篇
  2016年   3篇
  2015年   6篇
  2014年   14篇
  2013年   9篇
  2012年   10篇
  2011年   12篇
  2010年   3篇
  2009年   6篇
  2008年   5篇
  2007年   3篇
  2006年   6篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   8篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1986年   3篇
  1982年   2篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1970年   1篇
  1968年   1篇
  1955年   1篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
111.
112.
The chemokine receptors CCR5 and CXCR4 were found to function in vivo as the principal coreceptors for M-tropic and T-tropic human immunodeficiency virus (HIV) strains, respectively. Since many primary cells express multiple chemokine receptors, it was important to determine if the efficiency of virus-cell fusion is influenced not only by the presence of the appropriate coreceptor (CXCR4 or CCR5) but also by the levels of other coreceptors expressed by the same target cells. We found that in cells with low to medium surface CD4 density, coexpression of CCR5 and CXCR4 resulted in a significant reduction in the fusion with CXCR4 domain (X4) envelope-expressing cells and in their susceptibility to infection with X4 viruses. The inhibition could be reversed either by increasing the density of surface CD4 or by antibodies against the N terminus and second extracellular domains of CCR5. In addition, treatment of macrophages with a combination of anti-CCR5 antibodies or beta-chemokines increased their fusion with X4 envelope-expressing cells. Conversely, overexpression of CXCR4 compared with CCR5 inhibited CCR5-dependent HIV-dependent fusion in 3T3.CD4.401 cells. Thus, coreceptor competition for association with CD4 may occur in vivo and is likely to have important implications for the course of HIV type 1 infection, as well as for the outcome of coreceptor-targeted therapies.  相似文献   
113.
Within the past decade a number of new zoonotic paramyxoviruses emerged from flying foxes to cause serious disease outbreaks in man and livestock. Hendra virus was the cause of fatal infections of horses and man in Australia in 1994, 1999 and 2004. Nipah virus caused encephalitis in humans both in Malaysia in 1998/99, following silent spread of the virus in the pig population, and in Bangladesh from 2001 to 2004 probably as a result of direct bat to human transmission and spread within the human population. Hendra and Nipah viruses are highly pathogenic in humans with case fatality rates of 40% to 70%. Their genetic constitution, virulence and wide host range make them unique paramyxoviruses and they have been given Biosecurity Level 4 status in a new genus Henipavirus within the family Paramyxoviridae. Recent studies on the virulence, host range and cell tropisms of henipaviruses provide insights into the unique biological properties of these emerging human pathogens and suggest approaches for vaccine development and therapeutic countermeasures.  相似文献   
114.
CXCR4, the chemotactic cell receptor for SDF-1alpha, is essential for immune trafficking and HIV infection. CXCR4 is remarkably heterogeneous and the purpose of this study was to better identify the isoforms expressed by cells and compare their structure and function. We found that cells express either a predominant isoform or multiple isoforms. These were best resolved on SDS-PAGE using sucrose-gradient-fractionated, triton-insoluble, membrane extracts. We hypothesized that glycosyl modification may underpin some of this heterogeneity and that cell isoform(s) differences may underscore CXCR4's multiple cell functions. A comparison of wild-type (WT) and dual N-linked glycosylation site, N11A/N176A, mutant CXCR4 expressed in 3T3 and HEK-293 cells served to implicate variabilities in glycosylation and oligomerization in almost half of the isoforms. Immunoprecipitation of CXCR4 revealed monomer and dimer non-glycosylated forms of 34 kDa and 68 kDa from the N11A/N176A mutant, compared with glycosylated 40 kDa and 47 kDa and 73 kDa and 80 kDa forms from WT. The functional specificity of isoform action was also implicated because, despite CEMT4 cells expressing high levels of CXCR4 and 11 different isoforms, a single 83 kDa form was found to bind gp120 for HIV-1 IIIB infection. Furthermore, comparative studies found that in contrast to SDF-1alpha-responsive Nalm-6 cells that expressed similar levels of a single isoform, CEMT4 cells did not show a Ca(++) flux or a chemotactic response to SDF-1alpha. Thus, CXCR4 can differ both structurally and functionally between cells, with HIV-1 infection and chemotaxis apparently mediated by different isoforms. This separation of structure and function has implications for understanding HIV-1 entry and SDF-1alpha responses and may indicate therapeutic possibilities.  相似文献   
115.
CC Kuo  FP Chen 《Biophysical journal》1999,77(5):2552-2562
Modulation of voltage-dependent transient K(+) currents (A type K(+) or K(A) current) by Zn(2+) was studied in rat hippocampal neurons by the whole-cell patch-clamp technique. It is found that Zn(2+) selectively binds to the resting (deactivated or closed) K(A) channels with a dissociation constant (K(d)) of approximately 3 &mgr;M, whereas the affinity between Zn(2+) and the inactivated K(A) channels is 1000-fold lower. Zn(2+) therefore produces a concentration-dependent shift of the K(A) channel inactivation curve and enhances the K(A) current elicited from relatively positive holding potentials. It is also found that the kinetics of Zn(2+) action are fast enough to compete with the transition rates between different gating states of the channel. The rapid and selective binding of Zn(2+) to the closed K(A) channels keeps the channel in the closed state and explains the ion's concentration-dependent slowing effect on the activation of K(A) current. This in turn accounts for the inhibitory effect of Zn(2+) on the K(A) current elicited from hyperpolarized holding potentials. Because the molecular mechanisms underlying these gating changes are kinetic interactions between the binding-unbinding of Zn(2+) and the intrinsic gating processes of the channel, the shift of the inactivation curve and slowing of K(A) channel activation are quantitatively correlated with ambient Zn(2+) over a wide concentration range without "saturation"; i.e., The effects are already manifest in micromolar Zn(2+), yet are not saturated even in millimolar Zn(2+). Because the physiological concentration of Zn(2+) could vary over a similarly wide range according to neural activities, Zn(2+) may be a faithful physiological "fine tuner," controlling and controlled by neural activities through its effect on the K(A) current.  相似文献   
116.
117.
Most genetically modified (GM) crop plants are designed to be grown on large areas. However, empirical investigations for risk assessment are limited in their temporal and spatial extent. In the case of GM crop plants it is difficult to test the relevance of anticipated risks on the same spatial scale as the intended use. Processes which are difficult to assess experimentally include combinatory effects, interactions between different integration levels, persistence, long distance dispersal and occurrence of rare events. To a limited extent, it is possible to combine results of investigations on small spatial scales in a way that large-scale and long-term implications on the regional scale can be analysed by using modelling and extrapolation approaches. It is thus possible to indicate some of the involved risks which are not accessible otherwise.In this paper we present the results of an extrapolation methodology comprising several scales from the field size up to the landscape level. This methodology aimed at analysing the implications of a large-scale release of genetically modified oilseed rape (GM OSR). The approach consisted of an extrapolation scheme beginning with a landscape analysis which generated representative scenarios considering climate and OSR cultivation characteristics. For the spatial extent of several fields this information was applied in an individual-based model representing ontogeny, dispersal and persistence of cultivated, volunteers and feral oilseed rape. In a final step, simulation results were extrapolated to the region of Northern Germany.Here we focus on the model results which were extrapolated to the regional level by applying a set of ecological indicators which allowed to assess potential implications on this level. These indicators included the number and distribution of flowering GM plants and the dynamics of GM OSR seeds in the soil seedbank. Specific results related to the long-term dynamics in the seedbank and volunteer development. Model results emphasise the long-term consequences of GM OSR cultivation and the explicit necessity to regard high variability in potential GMO admixture. This has to be considered when developing landscape management schemes for co-existence.The extrapolation approach presented here, integrates different traits to assess effects of GMOs on large spatial scales with respect to persistence and dispersal. The developed methodology is equally applicable for other crops, regions and different agricultural conditions.  相似文献   
118.
Many microorganisms are capable of producing and secreting exopolysaccharides (EPS), which have important implications in medical fields, food applications or in the replacement of petro-based chemicals. We describe an analytical platform to be automated on a liquid handling system that allows the fast and reliable analysis of the type and the amount of EPS produced by microorganisms. It enables the user to identify novel natural microbial exopolysaccharide producers and to analyze the carbohydrate fingerprint of the corresponding polymers within one day in high-throughput (HT). Using this platform, strain collections as well as libraries of strain variants that might be obtained in engineering approaches can be screened. The platform has a modular setup, which allows a separation of the protocol into two major parts. First, there is an automated screening system, which combines different polysaccharide detection modules: a semi-quantitative analysis of viscosity formation via a centrifugation step, an analysis of polymer formation via alcohol precipitation and the determination of the total carbohydrate content via a phenol-sulfuric-acid transformation. Here, it is possible to screen up to 384 strains per run. The second part provides a detailed monosaccharide analysis for all the selected EPS producers identified in the first part by combining two essential modules: the analysis of the complete monomer composition via ultra-high performance liquid chromatography coupled with ultra violet and electrospray ionization ion trap detection (UHPLC-UV-ESI-MS) and the determination of pyruvate as a polymer substituent (presence of pyruvate ketal) via enzymatic oxidation that is coupled to a color formation. All the analytical modules of this screening platform can be combined in different ways and adjusted to individual requirements. Additionally, they can all be handled manually or performed with a liquid handling system. Thereby, the screening platform enables a huge flexibility in order to identify various EPS.  相似文献   
119.
The role of suppressor cells in the pathogenesis of immunodeficiency was analyzed using a technique that permits study of the differentiation of B lymphocytes into immunoglobulin-synthesizing plasma cells. Lymphocytes from normals synthesized 4,910 ng of IgM, 1,270 ng of IgA, and 1,625 ng of IgG per 2 X 10(6) cells when cultured for 7 days in the presence of pokeweed mitogen. In contrast the lymphocytes from patients with common variable hypogammaglobulinemia did not synthesize significant quantities of immunoglobulin. When lymphocytes from 9 of 13 patients with common variable hypogammaglobulinemia studied were cocultured with normal lymphocytes, the synthesis of immunoglobulin by the normal lymphocytes was depressed by 75-100%. A comparable suppression of immunoglobulin synthesis by normal lymphocytes was observed when they were cocultured with T cells from hypogammaglobulinemic patients. These studies suggest that in some patients the disease common variable hypogammaglobulinemia may not be due to an intrinsic defect of B cells alone but may be cuased or perpetuated by an abnormality of regulatory T cells that act to suppress B-cell maturation and antibody production. Peripheral blood lymphocytes from myeloma patients also had a drastically reduced capacity to produce polyclonal immunoglobulins. Three of 6 myeloma patients tested had circulating mononuclear cells that suppressed immunoglobulin production by cocultured normal lymphocytes. Purified T cells from myeloma patients did not mediate this suppressor effect. These observations suggest that one mechanism for the humoral immune deficiency observed in myeloma patients is a block of polyclonal B-cell maturation by suppressor cells.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号