首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   497篇
  免费   38篇
  2022年   4篇
  2021年   7篇
  2020年   3篇
  2019年   7篇
  2018年   8篇
  2017年   6篇
  2016年   10篇
  2015年   18篇
  2014年   17篇
  2013年   17篇
  2012年   25篇
  2011年   27篇
  2010年   19篇
  2009年   19篇
  2008年   21篇
  2007年   37篇
  2006年   28篇
  2005年   29篇
  2004年   12篇
  2003年   26篇
  2002年   30篇
  2001年   8篇
  2000年   10篇
  1999年   14篇
  1998年   12篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1993年   5篇
  1992年   10篇
  1991年   7篇
  1990年   7篇
  1989年   6篇
  1988年   5篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1982年   4篇
  1980年   5篇
  1979年   10篇
  1978年   4篇
  1976年   5篇
  1974年   2篇
  1973年   2篇
  1972年   4篇
  1971年   2篇
  1970年   2篇
  1968年   2篇
  1967年   2篇
  1960年   2篇
排序方式: 共有535条查询结果,搜索用时 15 毫秒
121.
Summary To learn more about the ways in which genes silenced by insertion mutations can be reactivated, we have undertaken a systematic investigation of Gal+ revertants of the polar mutant galOP-306::IS1 in Escherichia coli K12. The selective conditions used excluded reversion to wild type by precise excision of IS1. In this system (which resisded on a multi-copy plasmid) reversion to the Gal+ phenotype occurred with a frequency of about 10-7 per cell and per generation. Analysis of the revertants revealed that — with the single exception of the previously published chromosomal mutant sis1 — alterations in the structure of IS1 lead to reactivation of gal operon expression. These events fall into four classes: (I) insertion of IS2 at position 327 in IS1, insertion of IS2 at position 687 in IS1, (III) insertion of a hitherto undetected mobile element, IS150, at position 387, (IV) a 16-bp deletion encompassing IS1 coordinates 553–568. Of some 200 independent reversion events studied, all but one were of types I–III i.e. they involved the intervention of a second mobile element.  相似文献   
122.
Recently it has been demonstrated that L-form cells of Proteus mirabilis (L VI), which lack a periplasmic compartment, can be efficiently used in the production and secretion of heterologous proteins. In search of novel expression systems for recombinant antibodies, we compared levels of single-chain variable-fragment (scFv) production in Escherichia coli JM109 and P. mirabilis L VI, which express four distinct scFvs of potential clinical interest that show differences in levels of expression and in their tendencies to form aggregates upon periplasmic expression. Production of all analyzed scFvs in E. coli was limited by the severe toxic effect of the heterologous product as indicated by inhibition of culture growth and the formation of insoluble aggregates in the periplasmic space, limiting the yield of active product. In contrast, the L-form cells exhibited nearly unlimited growth under the tested production conditions for all scFvs examined. Moreover, expression experiments with P. mirabilis L VI led to scFv concentrations in the range of 40 to 200 mg per liter of culture medium (corresponding to volume yields 33- to 160-fold higher than those with E. coli JM109), depending on the expressed antibody. In a translocation inhibition experiment the secretion of the scFv constructs was shown to be an active transport coupled to the signal cleavage. We suppose that this direct release of the newly synthesized product into a large volume of the growth medium favors folding into the native active structure. The limited aggregation of scFv observed in the P. mirabilis L VI supernatant (occurring in a first-order-kinetics manner) was found to be due to intrinsic features of the scFv and not related to the expression process of the host cells. The P. mirabilis L VI supernatant was found to be advantageous for scFv purification. A two-step chromatography procedure led to homogeneous scFv with high antigen binding activity as revealed from binding experiments with eukaryotic cells.  相似文献   
123.
124.
125.
Two high-performance liquid chromatographic (HPLC) methods are described for determination of (±)-ethopropazine (ET) in rat plasma. After deproteination and liquid–liquid extraction, assay of (±)-ET was performed using either a C18 column (non-stereospecific assay) or an (α-R-naphthyl)ethylurea column (stereospecific assay). The UV detection was at 250 nm. Mean recovery was >85%. Both assays demonstrated excellent linear relationships between peak height ratios and plasma concentrations; quantitation limits were ≤25 ng/ml, based on 100 μl rat plasma. Accuracy and precision were <17% with both methods. Both methods were applied successfully to the measurement of ET plasma concentrations in rats given the drug intravenously.  相似文献   
126.
127.
During growth of Pseudomonas aeruginosa strain PAO1 with the toxic detergent SDS, a part of the population actively formed macroscopic cell aggregates while the other part grew as freely suspended cells. The physiological function of aggregation for growth with SDS was investigated. Three mutants growing with SDS without aggregation were isolated: the spontaneous mutant strain N and two mutants with transposon insertions in the psl operon for exopolysaccharide synthesis. SDS-induced aggregation in strain N but not in a pslJ mutant was restored by complementation with two genes encoding diguanylate cyclases responsible for synthesis of cyclic-di-guanosine monophosphate (c-di-GMP). By expressing a c-di-GMP-specific phosphodiesterase SDS-induced aggregation of strain PAO1 was reduced. Upon exposure to SDS in the presence of the uncoupler carbonyl cyanide chlorophenylhydrazone, the aggregating strains had ca. 500-fold higher survival rates than the non-aggregating strains. Co-incubation experiments revealed that strain N could integrate into aggregates of strain PAO1 and thereby increase its survival rate more than 1000-fold. These results showed that SDS-induced aggregation involved c-di-GMP signalling with the psl operon as a possible target. Cell aggregation could serve as a pre-adaptive strategy ensuring survival and growth of P. aeruginosa populations in environments with multiple toxic chemicals.  相似文献   
128.
Oculopharyngeal muscular dystrophy (OPMD), a late-onset disorder characterized by progressive degeneration of specific muscles, results from the extension of a polyalanine tract in poly(A) binding protein nuclear 1 (PABPN1). While the roles of PABPN1 in nuclear polyadenylation and regulation of alternative poly(A) site choice are established, the molecular mechanisms behind OPMD remain undetermined. Here, we show, using Drosophila and mouse models, that OPMD pathogenesis depends on affected poly(A) tail lengths of specific mRNAs. We identify a set of mRNAs encoding mitochondrial proteins that are down-regulated starting at the earliest stages of OPMD progression. The down-regulation of these mRNAs correlates with their shortened poly(A) tails and partial rescue of their levels when deadenylation is genetically reduced improves muscle function. Genetic analysis of candidate genes encoding RNA binding proteins using the Drosophila OPMD model uncovers a potential role of a number of them. We focus on the deadenylation regulator Smaug and show that it is expressed in adult muscles and specifically binds to the down-regulated mRNAs. In addition, the first step of the cleavage and polyadenylation reaction, mRNA cleavage, is affected in muscles expressing alanine-expanded PABPN1. We propose that impaired cleavage during nuclear cleavage/polyadenylation is an early defect in OPMD. This defect followed by active deadenylation of specific mRNAs, involving Smaug and the CCR4-NOT deadenylation complex, leads to their destabilization and mitochondrial dysfunction. These results broaden our understanding of the role of mRNA regulation in pathologies and might help to understand the molecular mechanisms underlying neurodegenerative disorders that involve mitochondrial dysfunction.  相似文献   
129.
Although human bitter taste perception is hypothesized to be a dietary adaptation, little is known about genetic signatures of selection and patterns of bitter taste perception variability in ethnically diverse populations with different diets, particularly from Africa. To better understand the genetic basis and evolutionary history of bitter taste sensitivity, we sequenced a 2,975 bp region encompassing TAS2R38, a bitter taste receptor gene, in 611 Africans from 57 populations in West Central and East Africa with diverse subsistence patterns, as well as in a comparative sample of 132 non-Africans. We also examined the association between genetic variability at this locus and threshold levels of phenylthiocarbamide (PTC) bitterness in 463 Africans from the above populations to determine how variation influences bitter taste perception. Here, we report striking patterns of variation at TAS2R38, including a significant excess of novel rare nonsynonymous polymorphisms that recently arose only in Africa, high frequencies of haplotypes in Africa associated with intermediate bitter taste sensitivity, a remarkably similar frequency of common haplotypes across genetically and culturally distinct Africans, and an ancient coalescence time of common variation in global populations. Additionally, several of the rare nonsynonymous substitutions significantly modified levels of PTC bitter taste sensitivity in diverse Africans. While ancient balancing selection likely maintained common haplotype variation across global populations, we suggest that recent selection pressures may have also resulted in the unusually high level of rare nonsynonymous variants in Africa, implying a complex model of selection at the TAS2R38 locus in African populations. Furthermore, the distribution of common haplotypes in Africa is not correlated with diet, raising the possibility that common variation may be under selection due to their role in nondietary biological processes. In addition, our data indicate that novel rare mutations contribute to the phenotypic variance of PTC sensitivity, illustrating the influence of rare variation on a common trait, as well as the relatively recent evolution of functionally diverse alleles at this locus.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号