首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   8篇
  2014年   1篇
  2012年   1篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1998年   1篇
  1995年   1篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1982年   2篇
  1977年   4篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有48条查询结果,搜索用时 46 毫秒
21.
A method is proposed to determine the rates of singlet energy transfers in an array of chromophores containing a finite number of donors and fluorescent acceptors. This method is based on measurements of transfer efficiency coupled with pulse fluorimetry. Three classes of donors can be distinguished which differ in their energy transfer rate. The rates of the first, the second and the third class are respectively greater than, of the order of, and smaller than the emission rate. The method is applied to the study of the energy transfers from tryptophan residues to NADPH, in ternary and quaternary glutamate dehydrogenase complexes. Practically, all these tryptophan residues belong to the first class. They can be divided into two subclasses having different transfer rate values. The distance between these residues and the NADPH site are of the order of 2.5 nm. In addition, the ligand binding induces a protein conformation change, leading to a fluorescence quenching of the tryptophanyl emission.  相似文献   
22.
Human immunodeficiency virus type 1 integrase is one of three viral enzymes, and it realizes a key process of the viral replication cycle, i.e. viral DNA integration into infected cell genome. Integrase recognizes nucleotide sequences located at the ends of the viral DNA U3 and U5 LTRs and catalyzes 3'-processing and strand transfer reactions. To study the interactions between integrase and viral DNA at present work, we used modified integrase substrates mimicking the terminal U5 LTR sequence and containing non-nucleoside insertions in one or/and both strands. It is shown that the substrate modifications have no influence on the integrase binding rate, while the heterocyclic bases removal in the 5th and 6th substrate positions and in the 3rd position of the substrate processed strand distinctly inhibits the integrase catalytic activity. This fact demonstrates these bases significance for the active enzyme/substrate complex formation. On the contrary, modification of the 3rd position within substrate non-processed strand stimulates 3'-processing. Since heterocyclic base elimination results in disruption of the DNA complementary and staking interactions, this result shows that DNA double helix destabilization close to the cleaved bond promotes the 3'-processing.  相似文献   
23.
The fluorescence properties of ribonuclease labelled at its active site with N-(iodoacetylamino)-ethyl-5-naphthylamine-1-sulfonic acid have been studied at different temperatures and in the presence of acrylamide. The rate constant for the quenching of the fluorescence of labelled ribonuclease by acrylamide is apparently not limited by the accessibility of the probe: similar values are obtained for the native and denatured states of the protein. Instead, acrylamide seems to be a rather inefficient quencher of this fluorescent group ((acetamidoamino) ethyl-5-naphtylamine-1-sulfonic acid), as shown by non-linear Stern-Volmer representations, biphasic decay kinetics, and a low value of the rate constant.The fluorescence intensity of the native state of the labelled protein is highly sensitive to temperature and exhibits a 20% decrease for an increase of temperature of from 10°C to 30°C, independent of solvent viscosity. This thermal quenching is specific for the native conformation and disappears when the protein is unfolded. When the fluorescence life-time of the label is shortened by addition of acrylamide, the effect of temperature becomes identical for native and unfolded structures. This suggests that the cause of the thermal quenching is the presence of conformational fluctuations within the native protein which apparently take place in the time range from 35 to 200 ns.Abbreviations used 1,5-IAEDANS N-(iodoacetylamino)ethyl-5-naphthylamine-1-sulfonic acid - AEDANS (acetamidoamine)-ethyl-5-naphthylamine-1-sulfonic acid - RNase bovine pancreatic ribonuclease - AEDANS-RNase RNase labelled with AEDANS - ME-AEDANS (hydroxyethylthioacetamido)ethyl-5-naphthylamine-1-sulfonic acid: the product of the reaction between 1,5-IAEDANS and -mercaptoethanol (Hudson and Weber 1973) - Gu-HCl guanidine hydrochloride  相似文献   
24.
The time-resolved fluorescence emission characteristics of the single tryptophan residue (Trp-59) of horse heart apocytochrome c--the precursor of the intramitochondrial cytochrome c--were studied in aqueous solution. The total fluorescence intensity decay measured over the whole emission spectrum was analyzed as a sum of three or four exponentials by the nonlinear least-squares method, the last model always providing a slight but significant decrease in the chi 2 values. Maximum entropy analysis, recently developed for time-resolved fluorometry (Livesey et al., 1987; Livesey & Brochon, 1987), strongly suggests the existence of a distribution including at least four separate classes of lifetimes. The center values were around 0.1-0.2, 1, 3, and 5 ns, in agreement with the lifetime values obtained by nonlinear least-squares regression analysis. As a function of the emission wavelength, these values remained constant within the experimental error, whereas a redistribution of the fractional amplitudes was observed: the contributions of the short components increased in the blue edge region of the emission spectrum. Temperature increase led essentially to a redistribution of the fractional amplitudes, affecting mostly that of the 5-ns component, which almost totally disappeared at high temperature (35-40 degrees C). The lifetime values were not significantly affected except for the 3-ns component, which decreased by about 15% in the temperature range studied. Such observations strongly suggest that the protein exists under different conformational substates in thermal equilibrium. Time-resolved fluorescence anisotropy measurements evidenced the existence of fast internal rotation of the Trp residue. An average maximum restricted angle of rotation of around 55 degrees was calculated. A second internal motion, slower by 1 order of magnitude, corresponding likely to a local motion of the peptide chain involving the Trp-59 residue, was detected on the anisotropy decay curve. Finally, the longest correlation time (5 ns) should correspond to the average rotation of the overall protein. Its value doubled as a function of the protein concentration, revealing an association process leading most likely to a dimer in the concentration range studied (2-139 microM). The flexibility of the peptide chain was more restrained in the associated than in the monomeric form, but the fast internal rotation of the Trp residue was not.  相似文献   
25.
26.
The RecQ family helicases catalyze the DNA unwinding reaction in an ATP hydrolysis-dependent manner. We investigated the mechanism of DNA unwinding by the Escherichia coli RecQ helicase using a new sensitive helicase assay based on fluorescence cross-correlation spectroscopy (FCCS) with two-photon excitation. The FCCS-based assay can be used to measure the unwinding activity under both single and multiple turnover conditions with no limitation related to the size of the DNA strands constituting the DNA substrate. We found that the monomeric helicase was sufficient to perform the unwinding of short DNA substrates. However, a significant increase in the activity was observed using longer DNA substrates, under single turnover conditions, originating from the simultaneous binding of multiple helicase monomers to the same DNA molecule. This functional cooperativity was strongly dependent on several factors, including DNA substrate length, the number and size of single-stranded 3′-tails, and the temperature. Regarding the latter parameter, a strong cooperativity was observed at 37 °C, whereas only modest or no cooperativity was observed at 25 °C regardless of the nature of the DNA substrate. Consistently, the functional cooperativity was found to be tightly associated with a cooperative DNA binding mode. We also showed that the cooperative binding of helicase to the DNA substrate indirectly accounts for the sigmoidal dependence of unwinding activity on ATP concentration, which also occurs only at 37 °C but not at 25 °C. Finally, we further examined the influences of spontaneous DNA rehybridization (after helicase translocation) and the single-stranded DNA binding property of helicase on the unwinding activity as detected in the FCCS assay.  相似文献   
27.
The human immunodeficiency virus type 1 integrase (IN) forms an oligomer that integrates both ends of the viral DNA. The nature of the active oligomer is unclear. Recombinant IN obtained under reducing conditions is always in the form of noncovalent oligomers. However, disulfide-linked oligomers of IN were recently observed within viral particles. We show that IN produced from a baculovirus expression system can form disulfide-linked oligomers. We investigated which residues are responsible for the disulfide bridges and the relationship between the ability to form covalent dimers and IN activity. Only the mutation of residue C280 was sufficient to prevent the formation of intermolecular disulfide bridges in oligomers of recombinant IN. IN activity was studied under and versus nonreducing conditions: the formation of disulfide bridges was not required for the in vitro activities of the enzyme. Moreover, the covalent dimer does not dissociate into individual protomers on disulfide bridge reduction. Instead, IN undergoes a spontaneous multimerization process that yields a homogenous noncovalent tetramer. The C280S mutation also completely abolished the formation of disulfide bonds in the context of the viral particle. Finally, the replication of the mutant virus was investigated in replicating and arrested cells. The infectivity of the virus was not affected by the C280S IN mutation in either dividing or nondividing cells. The disulfide-linked form of the IN oligomers observed in the viral particles is thus not required for viral replication.  相似文献   
28.
The RecQ helicases belong to an important family of highly conserved DNA helicases that play a key role in chromosomal maintenance, and their defects have been shown to lead to several disorders and cancer in humans. In this work, the conformational and functional properties of the Escherichia coli RecQ helicase have been determined using a wide array of biochemical and biophysical techniques. The results obtained clearly indicate that E. coli RecQ helicase is monomeric in solution up to a concentration of 20 microM and in a temperature range between 4 and 37 degrees C. Furthermore, these properties are not affected by the presence of ATP, which is strictly required for the unwinding and translocating activity of the protein, or by its nonhydrolyzable analogue 5'-adenylyl-beta,gamma-imidodiphosphate. Consistent with the structural properties, functional analysis shows that both DNA unwinding activity and single-stranded DNA-stimulated ATPase specific activity were independent of RecQ concentration. The monomeric state was further confirmed by the ATPase-deficient mutants of RecQ protein. The rate of unwinding was unchanged when the wild type RecQ helicase was mixed with the ATPase-deficient mutants, indicating that nonprotein-protein interactions were involved in the unwinding processes. Taken together, these results indicate that RecQ helicase functions as a monomer and provide new data on the structural and functional properties of RecQ helicase that may help elucidate its mechanism action.  相似文献   
29.
Förster resonance energy transfer (FRET) is a powerful method for obtaining information about small-scale lengths between biomacromolecules. Visible fluorescent proteins (VFPs) are widely used as spectrally different FRET pairs, where one VFP acts as a donor and another VFP as an acceptor. The VFPs are usually fused to the proteins of interest, and this fusion product is genetically encoded in cells. FRET between VFPs can be determined by analysis of either the fluorescence decay properties of the donor molecule or the rise time of acceptor fluorescence. Time-resolved fluorescence spectroscopy is the technique of choice to perform these measurements. FRET can be measured not only in solution, but also in living cells by the technique of fluorescence lifetime imaging microscopy (FLIM), where fluorescence lifetimes are determined with the spatial resolution of an optical microscope. Here we focus attention on time-resolved fluorescence spectroscopy of purified, selected VFPs (both single VFPs and FRET pairs of VFPs) in cuvette-type experiments. For quantitative interpretation of FRET–FLIM experiments in cellular systems, details of the molecular fluorescence are needed that can be obtained from experiments with isolated VFPs. For analysis of the time-resolved fluorescence experiments of VFPs, we have utilised the maximum entropy method procedure to obtain a distribution of fluorescence lifetimes. Distributed lifetime patterns turn out to have diagnostic value, for instance, in observing populations of VFP pairs that are FRET-inactive.  相似文献   
30.
Integration catalyzed by integrase (IN) is a key process in the retrovirus life cycle. Many biochemical or structural human immunodeficiency virus, type 1 (HIV-1) IN studies have been severely impeded by its propensity to aggregate. We characterized a retroviral IN (primate foamy virus (PFV-1)) that displays a solubility profile different from that of HIV-1 IN. Using various techniques, including fluorescence correlation spectroscopy, time-resolved fluorescence anisotropy, and size exclusion chromatography, we identified a monomer-dimer equilibrium for the protein alone, with a half-transition concentration of 20-30 mum. We performed specific enzymatic labeling of PFV-1 IN and measured the fluorescence resonance energy transfer between carboxytetramethylrhodamine-labeled IN and fluorescein-labeled DNA substrates. FRET and fluorescence anisotropy highlight the preferential binding of PFV-1 IN to the 3'-end processing site. Sequence-specific DNA binding was not observed with HIV-1 IN, suggesting that the intrinsic ability of retroviral INs to bind preferentially to the processing site is highly underestimated in the presence of aggregates. IN is in a dimeric state for 3'-processing on short DNA substrates, whereas IN polymerization, mediated by nonspecific contacts at internal DNA positions, occurs on longer DNAs. Additionally, aggregation, mediated by nonspecific IN-IN interactions, occurs preferentially with short DNAs at high IN/DNA ratios. The presence of either higher order complex is detrimental for specific activity. Ionic strength favors catalytically competent over higher order complexes by selectively disrupting nonspecific IN-IN interactions. This counteracting effect was not observed with polymerization. The synergic effect on the selection of specific/competent complexes, obtained by using short DNA substrates under high salt conditions, may have important implications for further structural studies in IN.DNA complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号